
Contiki 2.x Reference Manual

Generated by Doxygen 1.4.4

Thu Jun 22 17:45:42 2006

CONTENTS 1

Contents

1 The Contiki Operating System 2.x 1

2 Contiki 2.x Module Index 2

3 Contiki 2.x Directory Hierarchy 4

4 Contiki 2.x Data Structure Index 4

5 Contiki 2.x File Index 6

6 Contiki 2.x Module Documentation 9

7 Contiki 2.x Directory Documentation 177

8 Contiki 2.x Data Structure Documentation 183

9 Contiki 2.x File Documentation 204

10 Contiki 2.x Example Documentation 284

1 The Contiki Operating System 2.x

Author:
Adam Dunkels<adam@dunkels.com >

The Contiki operating system is a highly portable, minimalistic operating system for a variety of con-
strained systems ranging from modern 8-bit microcontrollers for embedded systems to old 8-bit homecom-
puters. Contiki provides a simple event driven kernel with optional preemptive multithreading, interprocess
communication using message passing signals, a dynamic process structure and support for loading and
unloading programs, native TCP/IP support using the uIP TCP/IP stack, and a graphical subsystem with
either direct graphic support for directly connected terminals or networked virtual display with VNC or
Telnet.

Contiki is written in the C programming language and is freely available as open source under
a BSD-style license. More information about Contiki can be found at the Contiki home page:
http://www.sics.se/ ∼adam/contiki/

1.1 TCP/IP support

Contiki includes the uIP TCP/IP stack (http://www.sics.se/ ∼adam/uip/) that provides Contiki
with TCP/IP networking support. uIP provides the protocols TCP, UDP, IP, and ARP.

See also:
The uIP TCP/IP stack documentation
The Contiki/uIP interface
Protosockets library

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
http://www.sics.se/~adam/contiki/
http://www.sics.se/~adam/uip/

1.2 Multi-threading and protothreads 2

1.2 Multi-threading and protothreads

Contiki is based on an event-driven kernel but provides support for both multi-threading and a lightweight
stackless thread-like construct called protothreads.

See also:
Contiki processes
Protothreads
Event timers
Optional multi-threading

1.3 Libraries

Contiki provides a set of convenience libraries for memory management and linked list operations.

See also:
Simple timer library
Memory block management
Linked list library

2 Contiki 2.x Module Index

2.1 Contiki 2.x Modules

Here is a list of all modules:

Network functions 9

The uIP TCP/IP stack 18

uIP configuration functions 110

Variables used in uIP device drivers 130

uIP Address Resolution Protocol 139

uIP TCP throughput booster hack 141

uIP packet forwarding 142

uIP hostname resolver functions 146

Uiparch 177

Protosockets library 148

The Contiki/uIP interface 154

Device driver APIs 11

EEPROM API 67

Radio API 68

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

2.1 Contiki 2.x Modules 3

Memory functions 11

Memory block management functions 154

Managed memory allocator 157

Contiki system 12

Contiki processes 42

Event timers 45

The Contiki service mechanism 50

Argument buffer 51

The Contiki program loader 52

ELF object code loader 69

Architecture specific functionality for the ELF loader. 71

Clock library 59

Multi-threading library 60

Architecture support for multi-threading 64

Multi-threading library convenience functions 65

Protothreads 73

Local continuations 55

Protothread semaphores 57

The Contiki file system interface 76

Timer library 108

Libraries 17

Linked list library 159

Table-driven Manchester encoding and decoding 164

Cyclic Redundancy Check 16 (CRC16) calculcation 166

Contiki platforms 17

The ESB Embedded Sensor Board 167

Introduction to Over The Air Reprogramming under Windows 167

Introduction to Contiki development under Microsoft Windows 169

Beeper interface 171

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

3 Contiki 2.x Directory Hierarchy 4

ESB RS232 174

TR1001 radio tranciever device driver 176

CTK graphical user interface 96

CTK application functions 80

CTK events 101

CTK device driver functions 103

uIP initialization functions 113

uIP device driver functions 113

uIP application functions 117

uIP conversion functions 124

Configuration options for uIP 130

Static configuration options 131

IP configuration options 132

UDP configuration options 133

TCP configuration options 133

ARP configuration options 136

General configuration options 136

CPU architecture configuration 138

Appication specific configurations 138

3 Contiki 2.x Directory Hierarchy

3.1 Contiki 2.x Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

apps 177

program-handler 181

core 178

cfs 177

ctk 178

dev 179

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

4 Contiki 2.x Data Structure Index 5

lib 179

loader 180

net 180

sys 181

platform 181

esb 179

dev 178

4 Contiki 2.x Data Structure Index

4.1 Contiki 2.x Data Structures

Here are the data structures with brief descriptions:

ctk_bitmap 183

ctk_button 183

ctk_desktop 183

ctk_hyperlink 184

ctk_icon 185

ctk_label 185

ctk_menu (Representation of an individual menu) 186

ctk_menuitem(Representation of an individual menu item) 186

ctk_menus(Representation of the menu bar) 187

ctk_separator 187

ctk_textedit 188

ctk_textentry 188

ctk_textmap 188

ctk_widget (The generic CTK widget structure that contains all other widget structures) 189

ctk_widget_bitmap 190

ctk_widget_button 190

ctk_widget_hyperlink 190

ctk_widget_icon 191

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

4.1 Contiki 2.x Data Structures 6

ctk_widget_label 191

ctk_widget_textentry 191

ctk_window (Representation of a CTK window) 191

dsc(The DSC program description structure) 193

elf32_rela 194

etimer (A timer) 194

memb_blocks 195

mmem 195

mt_process 195

mt_thread 195

process 196

psock(The representation of a protosocket) 196

psock_buf 197

pt 197

pt_sem 197

service 197

tcpip_uipstate 198

timer (A timer) 198

uip_conn (Representation of a uIP TCP connection) 198

uip_eth_addr (Representation of a 48-bit Ethernet address) 199

uip_eth_hdr (The Ethernet header) 200

uip_fw_netif (Representation of a uIP network interface) 200

uip_icmpip_hdr 200

uip_stats(The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS
is set to 1) 201

uip_tcpip_hdr 203

uip_udp_conn(Representation of a uIP UDP connection) 203

uip_udpip_hdr 204

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

5 Contiki 2.x File Index 7

5 Contiki 2.x File Index

5.1 Contiki 2.x File List

Here is a list of all documented files with brief descriptions:

apps/program-handler/program-handler.c (The program handler, used for loading programs
and starting the screensaver) 204

core/cfs/cfs.h(CFS header file) 206

core/ctk/ctk-draw.h (CTK screen drawing module interface, ctk-draw) 207

core/ctk/ctk.c (The Contiki Toolkit CTK, the Contiki GUI) 208

core/ctk/ctk.h (CTK header file) 211

core/dev/eeprom.h(EEPROM functions) 216

core/dev/radio.h (Header file for the radio API) 217

core/lib/crc16.c(Implementation of the CRC16 calculcation) 217

core/lib/crc16.h(Header file for the CRC16 calculcation) 218

core/lib/ctk-textedit.c (An experimental CTK text edit widget) 218

core/lib/ctk-textedit.h (Header file for the experimental application level CTK textedit widget
) 219

core/lib/list.c (Linked list library implementation) 221

core/lib/list.h (Linked list manipulation routines) 222

core/lib/me.c(Implementation of the table-driven Manchester encoding and decoding) 223

core/lib/me.h(Header file for the table-driven Manchester encoding and decoding) 224

core/lib/memb.c(Memory block allocation routines) 224

core/lib/memb.h(Memory block allocation routines) 225

core/lib/mmem.c(Implementation of the managed memory allocator) 226

core/lib/mmem.h(Header file for the managed memory allocator) 226

core/lib/petsciiconv.h(PETSCII/ASCII conversion functions) 227

core/loader/elfloader-arch.h(Header file for the architecture specific parts of the Contiki ELF
loader) 227

core/loader/elfloader-tmp.h (Header file for the Contiki ELF loader) 228

core/net/psock.c ??

core/net/psock.h(Protosocket library header file) 229

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

5.1 Contiki 2.x File List 8

core/net/resolv.c(DNS host name to IP address resolver) 231

core/net/resolv.h(UIP DNS resolver code header file) 232

core/net/tcpip.c ??

core/net/tcpip.h (Header for the Contiki/uIP interface) 233

core/net/uip-fw.c (UIP packet forwarding) 238

core/net/uip-fw.h (UIP packet forwarding header file) 239

core/net/uip-split.c ??

core/net/uip-split.h (Module for splitting outbound TCP segments in two to avoid the delayed
ACK throughput degradation) 240

core/net/uip.c (The uIP TCP/IP stack code) 240

core/net/uip.h (Header file for the uIP TCP/IP stack) 243

core/net/uip_arp.c (Implementation of the ARP Address Resolution Protocol) 248

core/net/uip_arp.h (Macros and definitions for the ARP module) 249

core/net/uiplib.c ??

core/net/uiplib.h (Various uIP library functions) 250

core/net/uipopt.h (Configuration options for uIP) 251

core/sys/arg.c (Argument buffer for passing arguments when starting processes) 253

core/sys/cc.h(Default definitions of C compiler quirk work-arounds) 253

core/sys/clock.h ??

core/sys/dsc.h(Declaration of the DSC program description structure) 254

core/sys/etimer.c (Event timer library implementation) 255

core/sys/etimer.h (Event timer header file) 256

core/sys/lc-addrlabels.h (Implementation of local continuations based on the "Labels as val-
ues" feature of gcc) 257

core/sys/lc-switch.h (Implementation of local continuations based on switch() statment) 257

core/sys/lc.h (Local continuations) 258

core/sys/loader.h (Default definitions and error values for the Contiki program loader) 259

core/sys/mt.c (Implementation of the archtecture agnostic parts of the preemptive multi-
threading library for Contiki) 260

core/sys/mt.h (Header file for the preemptive multitasking library for Contiki) 261

core/sys/process.c(Implementation of the Contiki process kernel) 262

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6 Contiki 2.x Module Documentation 9

core/sys/process.h(Header file for the Contiki process interface) 264

core/sys/procinit.c ??

core/sys/procinit.h ??

core/sys/pt-sem.h(Counting semaphores implemented on protothreads) 271

core/sys/pt.h (Protothreads implementation) 272

core/sys/service.c(Implementation of the Contiki service mechanism) 277

core/sys/service.h(Header file for the Contiki service mechanism) 277

core/sys/timer.c (Timer library implementation) 279

core/sys/timer.h (Timer library header file) 279

platform/esb/dev/beep.h(Interface to the beeper) 280

platform/esb/dev/eeprom.c(EEPROM functions) 281

platform/esb/dev/rs232.c(RS232 communication device driver for the MSP430) 282

platform/esb/dev/rs232.h(Header file for MSP430 RS232 driver) 282

platform/esb/dev/tr1001.c (Device driver and packet framing for the RFM-TR1001 radio
module) 283

6 Contiki 2.x Module Documentation

6.1 Network functions

Modules

• The uIP TCP/IP stack

The uIP TCP/IP stack provides Internet communication abilities to Contiki.

• Protosockets library

The protosocket library provides an interface to the uIP stack that is similar to the traditional BSD socket
interface.

• The Contiki/uIP interface

TCP/IP support in Contiki is implemented using the uIP TCP/IP stack.

TCP functions

• #definetcp_markconn(conn, appstate) tcp_attach(conn, appstate)
• void tcp_attach(structuip_conn∗conn, void∗appstate)

Attach a TCP connection to the current process.

• void tcp_listen(u16_t port)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.1 Network functions 10

Open a TCP port.

• void tcp_unlisten(u16_t port)

Close a listening TCP port.

• uip_conn∗ tcp_connect(u16_t∗ripaddr, u16_t port, void∗appstate)

Open a TCP connection to the specified IP address and port.

• void tcpip_poll_tcp(structuip_conn∗conn)

Cause a specified TCP connection to be polled.

6.1.1 Function Documentation

6.1.1.1 void tcp_attach (structuip_conn∗ conn, void ∗ appstate)

Attach a TCP connection to the current process.

This function attaches the current process to a TCP connection. Each TCP connection must be attached to
a process in order for the process to be able to receive and send data. Additionally, this function can add a
pointer with connection state to the connection.

Parameters:
conn A pointer to the TCP connection.

appstateAn opaque pointer that will be passed to the process whenever an event occurs on the con-
nection.

Definition at line 169 of file tcpip.c.

References uip_conn::appstate, tcpip_uipstate::p, PROCESS_CURRENT, and tcpip_uipstate::state.

6.1.1.2 structuip_conn∗ tcp_connect (u16_t∗ ripaddr, u16_tport, void ∗ appstate)

Open a TCP connection to the specified IP address and port.

This function opens a TCP connection to the specified port at the host specified with an IP address. Addi-
tionally, an opaque pointer can be attached to the connection. This pointer will be sent together with uIP
events to the process.

Note:
The port number must be provided in network byte order so a conversion withHTONS() usually is
necessary.
This function will only create the connection. The connection is not opened directly. uIP will try to
open the connection the next time the uIP stack is scheduled by Contiki.

Parameters:
ripaddr Pointer to the IP address of the remote host.

port Port number in network byte order.

appstatePointer to application defined data.

Returns:
A pointer to the newly created connection, or NULL if memory could not be allocated for the connec-
tion.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.1 Network functions 11

Definition at line 115 of file tcpip.c.

References uip_conn::appstate, NULL, tcpip_uipstate::p, PROCESS_CURRENT, tcpip_uipstate::state,
tcpip_poll_tcp(), and uip_connect().

6.1.1.3 void tcp_listen (u16_tport)

Open a TCP port.

This function opens a TCP port for listening. When a TCP connection request occurs for the port, the
process will be sent a tcpip_event with the new connection request.

Note:
Port numbers must always be given in network byte order. The functionsHTONS()andhtons()can be
used to convert port numbers from host byte order to network byte order.

Parameters:
port The port number in network byte order.

Examples:
example-psock-server.c.

Definition at line 151 of file tcpip.c.

References PROCESS_CURRENT, uip_listen(), and UIP_LISTENPORTS.

6.1.1.4 void tcp_unlisten (u16_tport)

Close a listening TCP port.

This function closes a listening TCP port.

Note:
Port numbers must always be given in network byte order. The functionsHTONS()andhtons()can be
used to convert port numbers from host byte order to network byte order.

Parameters:
port The port number in network byte order.

Definition at line 133 of file tcpip.c.

References PROCESS_CURRENT, UIP_LISTENPORTS, and uip_unlisten().

6.1.1.5 void tcpip_poll_tcp (structuip_conn∗ conn)

Cause a specified TCP connection to be polled.

This function causes uIP to poll the specified TCP connection. The function is used when the application
has data that is to be sent immediately and do not wish to wait for the periodic uIP polling mechanism.

Parameters:
conn A pointer to the TCP connection that should be polled.

Definition at line 346 of file tcpip.c.

References process_post().

Referenced by tcp_connect().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.2 Device driver APIs 12

6.2 Device driver APIs

Modules

• EEPROM API

The EEPROM API defines a common interface for EEPROM access on Contiki platforms.

• Radio API

The radio API module defines a set of functions that a radio device driver must implement.

6.3 Memory functions

Modules

• Memory block management functions

The memory block allocation routines provide a simple yet powerful set of functions for managing a set of
memory blocks of fixed size.

• Managed memory allocator

The managed memory allocator is a fragmentation-free memory manager.

6.4 Contiki system

Modules

• Contiki processes

A process in Contiki consists of a singleProtothreadsprotothread.

• Event timers

Event timers provides a way to generate timed events.

• The Contiki service mechanism

The Contiki service mechanism enables cross-process functions.

• Argument buffer

The argument buffer can be used when passing an argument from an exiting process to a process that has
not been created yet.

• The Contiki program loader

The Contiki program loader is an abstract interface for loading and starting programs.

• Clock library

The clock library is the interface between Contiki and the platform specific clock functionality.

• Multi-threading library

The event driven Contiki kernel does not provide multi-threading by itself - instead, preemptive multi-
threading is implemented as a library that optionally can be linked with applications.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.4 Contiki system 13

• Protothreads

Protothreads are a type of lightweight stackless threads designed for severly memory constrained systems
such as deeply embedded systems or sensor network nodes.

• The Contiki file system interface

The Contiki file system interface (CFS) defines an abstract API for reading directories and for reading and
writing files.

• Timer library

The Contiki kernel does not provide support for timed events.

Return values

• #definePROCESS_ERR_OK0

Return value indicating that an operation was successful.

• #definePROCESS_ERR_FULL1

Return value indicating that the event queue was full.

Service declaration and defition

• #defineSERVICE_INTERFACE(name, interface)

Define the name and interface of a service.

• #defineSERVICE(name, service_name,)

Define an implementation of a service interface.

Functions called from application programs

• void etimer_set(structetimer∗et, clock_time_t interval)

Set an event timer.

• void etimer_reset(structetimer∗et)

Reset an event timer with the same interval as was previously set.

• void etimer_restart(structetimer∗et)

Restart an event timer from the current point in time.

• void etimer_adjust(structetimer∗et, int td)

Adjust the expiration time for an event timer.

• clock_time_tetimer_expiration_time(structetimer∗et)

Get the expiration time for the event timer.

• clock_time_tetimer_start_time(structetimer∗et)

Get the start time for the event timer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.4 Contiki system 14

• int etimer_expired(structetimer∗et)

Check if an event timer has expired.

• void etimer_stop(structetimer∗et)

Stop a pending event timer.

Defines

• #definePROCESS_NONENULL
• #definePROCESS_CONF_NUMEVENTS32
• #definePROCESS_EVENT_NONE0x80
• #definePROCESS_EVENT_INIT0x81
• #definePROCESS_EVENT_POLL0x82
• #definePROCESS_EVENT_EXIT0x83
• #definePROCESS_EVENT_SERVICE_REMOVED0x84
• #definePROCESS_EVENT_CONTINUE0x85
• #definePROCESS_EVENT_MSG0x86
• #definePROCESS_EVENT_EXITED0x87
• #definePROCESS_EVENT_TIMER0x88
• #definePROCESS_EVENT_MAX0x89
• #definePROCESS_BROADCASTNULL
• #definePROCESS_ZOMBIE((structprocess∗)0x1)

6.4.1 Define Documentation

6.4.1.1 #define PROCESS_ERR_FULL 1

Return value indicating that the event queue was full.

This value is returned fromprocess_post()to indicate that the event queue was full and that an event could
not be posted.

Definition at line 83 of file process.h.

Referenced by process_post().

6.4.1.2 #define PROCESS_ERR_OK 0

Return value indicating that an operation was successful.

This value is returned to indicate that an operation was successful.

Definition at line 75 of file process.h.

Referenced by process_post(), and PROCESS_THREAD().

6.4.1.3 #define SERVICE(name, service_name)

Define an implementation of a service interface.

Parameters:
name The name of this particular instance of the service, for use withSERVICE_REGISTER().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.4 Contiki system 15

service_nameThe name of the service, from theSERVICE_INTERFACE().

... A structure containing the functions that implements the service.

This statement defines the name of this implementation of the service and defines the functions that actually
implement the functions offered by the service.

Examples:
example-packet-service.c, andexample-service.c.

Definition at line 125 of file service.h.

6.4.1.4 #define SERVICE_INTERFACE(name, interface)

Define the name and interface of a service.

This statement defines the name and interface of a service.

Parameters:
name The name of the service.

interface A list of function declarations that comprises the service interface. This list must be enclosed
by curly brackets and consist of declarations of function pointers separated by semicolons.

Examples:
example-service.h.

Definition at line 110 of file service.h.

6.4.2 Function Documentation

6.4.2.1 void etimer_adjust (structetimer ∗ et, int td)

Adjust the expiration time for an event timer.

Parameters:
et A pointer to the event timer.

td The time difference to adjust the expiration time with.

This function is used to adjust the time the event timer will expire. It can be used to synchronize periodic
timers without the need to restart the timer or change the timer interval.

Note:
This function should only be used for small adjustments. For large adjustments useetimer_set()in-
stead.
A periodic timer will drift unless theetimer_reset()function is used.

See also:
etimer_set()
etimer_reset()

Definition at line 194 of file etimer.c.

References timer::start, and etimer::timer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.4 Contiki system 16

6.4.2.2 clock_time_t etimer_expiration_time (structetimer ∗ et)

Get the expiration time for the event timer.

Parameters:
et A pointer to the event timer

Returns:
The expiration time for the event timer.

This function returns the expiration time for an event timer.

Definition at line 207 of file etimer.c.

References timer::interval, timer::start, and etimer::timer.

6.4.2.3 int etimer_expired (structetimer ∗ et)

Check if an event timer has expired.

Parameters:
et A pointer to the event timer

Returns:
Non-zero if the timer has expired, zero otherwise.

This function tests if an event timer has expired and returns true or false depending on its status.

Definition at line 201 of file etimer.c.

References etimer::p, and PROCESS_NONE.

Referenced by tcpip_uipcall().

6.4.2.4 void etimer_reset (structetimer ∗ et)

Reset an event timer with the same interval as was previously set.

Parameters:
et A pointer to the event timer.

This function resets the event timer with the same interval that was given to the event timer with the
etimer_set()function. The start point of the interval is the exact time that the event timer last expired.
Therefore, this function will cause the timer to be stable over time, unlike theetimer_restart()function.

See also:
etimer_restart()

Definition at line 180 of file etimer.c.

References etimer::timer, and timer_reset().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.4 Contiki system 17

6.4.2.5 void etimer_restart (structetimer ∗ et)

Restart an event timer from the current point in time.

Parameters:
et A pointer to the event timer.

This function restarts the event timer with the same interval that was given to theetimer_set()function.
The event timer will start at the current time.

Note:
A periodic timer will drift if this function is used to reset it. For periodic timers, use theetimer_reset()
function instead.

See also:
etimer_reset()

Definition at line 187 of file etimer.c.

References etimer::timer, and timer_restart().

Referenced by tcpip_uipcall().

6.4.2.6 void etimer_set (structetimer ∗ et, clock_time_t interval)

Set an event timer.

Parameters:
et A pointer to the event timer

interval The interval before the timer expires.

This function is used to set an event timer for a time sometime in the future. When the event timer expires,
the event PROCESS_EVENT_TIMER will be posted to the process that called theetimer_set()function.

Definition at line 173 of file etimer.c.

References etimer::timer, and timer_set().

6.4.2.7 clock_time_t etimer_start_time (structetimer ∗ et)

Get the start time for the event timer.

Parameters:
et A pointer to the event timer

Returns:
The start time for the event timer.

This function returns the start time (when the timer was last set) for an event timer.

Definition at line 213 of file etimer.c.

References timer::start, and etimer::timer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.5 Libraries 18

6.4.2.8 void etimer_stop (structetimer ∗ et)

Stop a pending event timer.

Parameters:
et A pointer to the pending event timer.

This function stops an event timer that has previously been set withetimer_set()or etimer_reset(). After
this function has been called, the event timer will not emit any event when it expires.

Definition at line 231 of file etimer.c.

References etimer::next, NULL, etimer::p, and PROCESS_NONE.

6.5 Libraries

Modules

• Linked list library

The linked list library provides a set of functions for manipulating linked lists.

• Table-driven Manchester encoding and decoding

Manchester encoding is a bit encoding scheme which translates each bit into two bits: the original bit and
the inverted bit.

• Cyclic Redundancy Check 16 (CRC16) calculcation

The Cyclic Redundancy Check 16 is a hash function that produces a checksum that is used to detect errors
in transmissions.

6.6 Contiki platforms

Modules

• The ESB Embedded Sensor Board

The ESB (Embedded Sensor Board) is a prototype wireless sensor network device developed at Freie Uni-
versität Berlin.

6.7 The uIP TCP/IP stack

6.7.1 Detailed Description

The uIP TCP/IP stack provides Internet communication abilities to Contiki.

6.7.2 uIP introduction

The uIP TCP/IP stack is intended to make it possible to communicate using the TCP/IP protocol suite even
on small 8-bit micro-controllers. Despite being small and simple, uIP do not require their peers to have
complex, full-size stacks, but can communicate with peers running a similarly light-weight stack. The code

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 19

size is on the order of a few kilobytes and RAM usage can be configured to be as low as a few hundred
bytes.

uIP can be found at the uIP web page:http://www.sics.se/ ∼adam/uip/

See also:
The Contiki/uIP interface
uIP Compile-time configuration options
uIP Run-time configuration functions
uIP initialization functions
uIP device driver interfaceanduIP variables used by device drivers
uIP functions called from application programs(see below) and theprotosockets APIand their under-
lying protothreads

6.7.3 Introduction

With the success of the Internet, the TCP/IP protocol suite has become a global standard for communica-
tion. TCP/IP is the underlying protocol used for web page transfers, e-mail transmissions, file transfers, and
peer-to-peer networking over the Internet. For embedded systems, being able to run native TCP/IP makes
it possible to connect the system directly to an intranet or even the global Internet. Embedded devices with
full TCP/IP support will be first-class network citizens, thus being able to fully communicate with other
hosts in the network.

Traditional TCP/IP implementations have required far too much resources both in terms of code size and
memory usage to be useful in small 8 or 16-bit systems. Code size of a few hundred kilobytes and RAM
requirements of several hundreds of kilobytes have made it impossible to fit the full TCP/IP stack into
systems with a few tens of kilobytes of RAM and room for less than 100 kilobytes of code.

The uIP implementation is designed to have only the absolute minimal set of features needed for a full
TCP/IP stack. It can only handle a single network interface and contains the IP, ICMP, UDP and TCP
protocols. uIP is written in the C programming language.

Many other TCP/IP implementations for small systems assume that the embedded device always will com-
municate with a full-scale TCP/IP implementation running on a workstation-class machine. Under this
assumption, it is possible to remove certain TCP/IP mechanisms that are very rarely used in such situa-
tions. Many of those mechanisms are essential, however, if the embedded device is to communicate with
another equally limited device, e.g., when running distributed peer-to-peer services and protocols. uIP is
designed to be RFC compliant in order to let the embedded devices to act as first-class network citizens.
The uIP TCP/IP implementation that is not tailored for any specific application.

6.7.4 TCP/IP Communication

The full TCP/IP suite consists of numerous protocols, ranging from low level protocols such as ARP which
translates IP addresses to MAC addresses, to application level protocols such as SMTP that is used to
transfer e-mail. The uIP is mostly concerned with the TCP and IP protocols and upper layer protocols will
be referred to as "the application". Lower layer protocols are often implemented in hardware or firmware
and will be referred to as "the network device" that are controlled by the network device driver.

TCP provides a reliable byte stream to the upper layer protocols. It breaks the byte stream into appropriately
sized segments and each segment is sent in its own IP packet. The IP packets are sent out on the network
by the network device driver. If the destination is not on the physically connected network, the IP packet
is forwarded onto another network by a router that is situated between the two networks. If the maximum
packet size of the other network is smaller than the size of the IP packet, the packet is fragmented into
smaller packets by the router. If possible, the size of the TCP segments are chosen so that fragmentation

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

http://www.sics.se/~adam/uip/

6.7 The uIP TCP/IP stack 20

is minimized. The final recipient of the packet will have to reassemble any fragmented IP packets before
they can be passed to higher layers.

The formal requirements for the protocols in the TCP/IP stack is specified in a number of RFC documents
published by the Internet Engineering Task Force, IETF. Each of the protocols in the stack is defined in one
more RFC documents and RFC1122 collects all requirements and updates the previous RFCs.

The RFC1122 requirements can be divided into two categories; those that deal with the host to host com-
munication and those that deal with communication between the application and the networking stack.
An example of the first kind is "A TCP MUST be able to receive a TCP option in any segment" and an
example of the second kind is "There MUST be a mechanism for reporting soft TCP error conditions to
the application." A TCP/IP implementation that violates requirements of the first kind may not be able
to communicate with other TCP/IP implementations and may even lead to network failures. Violation of
the second kind of requirements will only affect the communication within the system and will not affect
host-to-host communication.

In uIP, all RFC requirements that affect host-to-host communication are implemented. However, in order
to reduce code size, we have removed certain mechanisms in the interface between the application and
the stack, such as the soft error reporting mechanism and dynamically configurable type-of-service bits for
TCP connections. Since there are only very few applications that make use of those features they can be
removed without loss of generality.

6.7.5 Main Control Loop

The uIP stack can be run either as a task in a multitasking system, or as the main program in a singletasking
system. In both cases, the main control loop does two things repeatedly:

• Check if a packet has arrived from the network.

• Check if a periodic timeout has occurred.

If a packet has arrived, the input handler function,uip_input(), should be invoked by the main control
loop. The input handler function will never block, but will return at once. When it returns, the stack or
the application for which the incoming packet was intended may have produced one or more reply packets
which should be sent out. If so, the network device driver should be called to send out these packets.

Periodic timeouts are used to drive TCP mechanisms that depend on timers, such as delayed acknowledg-
ments, retransmissions and round-trip time estimations. When the main control loop infers that the periodic
timer should fire, it should invoke the timer handler functionuip_periodic(). Because the TCP/IP stack may
perform retransmissions when dealing with a timer event, the network device driver should called to send
out the packets that may have been produced.

6.7.6 Architecture Specific Functions

uIP requires a few functions to be implemented specifically for the architecture on which uIP is intended to
run. These functions should be hand-tuned for the particular architecture, but generic C implementations
are given as part of the uIP distribution.

6.7.6.1 Checksum Calculation The TCP and IP protocols implement a checksum that covers the data
and header portions of the TCP and IP packets. Since the calculation of this checksum is made over all
bytes in every packet being sent and received it is important that the function that calculates the checksum
is efficient. Most often, this means that the checksum calculation must be fine-tuned for the particular
architecture on which the uIP stack runs.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 21

While uIP includes a generic checksum function, it also leaves it open for an architecture specific imple-
mentation of the two functionsuip_ipchksum()anduip_tcpchksum(). The checksum calculations in those
functions can be written in highly optimized assembler rather than generic C code.

6.7.6.2 32-bit Arithmetic The TCP protocol uses 32-bit sequence numbers, and a TCP implementation
will have to do a number of 32-bit additions as part of the normal protocol processing. Since 32-bit
arithmetic is not natively available on many of the platforms for which uIP is intended, uIP leaves the 32-
bit additions to be implemented by the architecture specific module and does not make use of any 32-bit
arithmetic in the main code base.

While uIP implements a generic 32-bit addition, there is support for having an architecture specific imple-
mentation of theuip_add32()function.

6.7.7 Memory Management

In the architectures for which uIP is intended, RAM is the most scarce resource. With only a few kilobytes
of RAM available for the TCP/IP stack to use, mechanisms used in traditional TCP/IP cannot be directly
applied.

The uIP stack does not use explicit dynamic memory allocation. Instead, it uses a single global buffer
for holding packets and has a fixed table for holding connection state. The global packet buffer is large
enough to contain one packet of maximum size. When a packet arrives from the network, the device driver
places it in the global buffer and calls the TCP/IP stack. If the packet contains data, the TCP/IP stack
will notify the corresponding application. Because the data in the buffer will be overwritten by the next
incoming packet, the application will either have to act immediately on the data or copy the data into a
secondary buffer for later processing. The packet buffer will not be overwritten by new packets before the
application has processed the data. Packets that arrive when the application is processing the data must be
queued, either by the network device or by the device driver. Most single-chip Ethernet controllers have
on-chip buffers that are large enough to contain at least 4 maximum sized Ethernet frames. Devices that
are handled by the processor, such as RS-232 ports, can copy incoming bytes to a separate buffer during
application processing. If the buffers are full, the incoming packet is dropped. This will cause performance
degradation, but only when multiple connections are running in parallel. This is because uIP advertises
a very small receiver window, which means that only a single TCP segment will be in the network per
connection.

In uIP, the same global packet buffer that is used for incoming packets is also used for the TCP/IP headers
of outgoing data. If the application sends dynamic data, it may use the parts of the global packet buffer that
are not used for headers as a temporary storage buffer. To send the data, the application passes a pointer to
the data as well as the length of the data to the stack. The TCP/IP headers are written into the global buffer
and once the headers have been produced, the device driver sends the headers and the application data out
on the network. The data is not queued for retransmissions. Instead, the application will have to reproduce
the data if a retransmission is necessary.

The total amount of memory usage for uIP depends heavily on the applications of the particular device in
which the implementations are to be run. The memory configuration determines both the amount of traffic
the system should be able to handle and the maximum amount of simultaneous connections. A device that
will be sending large e-mails while at the same time running a web server with highly dynamic web pages
and multiple simultaneous clients, will require more RAM than a simple Telnet server. It is possible to run
the uIP implementation with as little as 200 bytes of RAM, but such a configuration will provide extremely
low throughput and will only allow a small number of simultaneous connections.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 22

6.7.8 Application Program Interface (API)

The Application Program Interface (API) defines the way the application program interacts with the TCP/IP
stack. The most commonly used API for TCP/IP is the BSD socket API which is used in most Unix systems
and has heavily influenced the Microsoft Windows WinSock API. Because the socket API uses stop-and-
wait semantics, it requires support from an underlying multitasking operating system. Since the overhead
of task management, context switching and allocation of stack space for the tasks might be too high in the
intended uIP target architectures, the BSD socket interface is not suitable for our purposes.

uIP provides two APIs to programmers: protosockets, a BSD socket-like API without the overhead of full
multi-threading, and a "raw" event-based API that is nore low-level than protosockets but uses less memory.

See also:
Protosockets library
Protothreads

6.7.8.1 The uIP raw API The "raw" uIP API uses an event driven interface where the application is
invoked in response to certain events. An application running on top of uIP is implemented as a C function
that is called by uIP in response to certain events. uIP calls the application when data is received, when
data has been successfully delivered to the other end of the connection, when a new connection has been
set up, or when data has to be retransmitted. The application is also periodically polled for new data. The
application program provides only one callback function; it is up to the application to deal with mapping
different network services to different ports and connections. Because the application is able to act on
incoming data and connection requests as soon as the TCP/IP stack receives the packet, low response times
can be achieved even in low-end systems.

uIP is different from other TCP/IP stacks in that it requires help from the application when doing re-
transmissions. Other TCP/IP stacks buffer the transmitted data in memory until the data is known to be
successfully delivered to the remote end of the connection. If the data needs to be retransmitted, the stack
takes care of the retransmission without notifying the application. With this approach, the data has to be
buffered in memory while waiting for an acknowledgment even if the application might be able to quickly
regenerate the data if a retransmission has to be made.

In order to reduce memory usage, uIP utilizes the fact that the application may be able to regenerate sent
data and lets the application take part in retransmissions. uIP does not keep track of packet contents af-
ter they have been sent by the device driver, and uIP requires that the application takes an active part in
performing the retransmission. When uIP decides that a segment should be retransmitted, it calls the appli-
cation with a flag set indicating that a retransmission is required. The application checks the retransmission
flag and produces the same data that was previously sent. From the application’s standpoint, performing
a retransmission is not different from how the data originally was sent. Therefore the application can be
written in such a way that the same code is used both for sending data and retransmitting data. Also, it is
important to note that even though the actual retransmission operation is carried out by the application, it
is the responsibility of the stack to know when the retransmission should be made. Thus the complexity of
the application does not necessarily increase because it takes an active part in doing retransmissions.

Application Events The application must be implemented as a C function,UIP_APPCALL(), that uIP
calls whenever an event occurs. Each event has a corresponding test function that is used to distinguish
between different events. The functions are implemented as C macros that will evaluate to either zero or
non-zero. Note that certain events can happen in conjunction with each other (i.e., new data can arrive at
the same time as data is acknowledged).

The Connection Pointer When the application is called by uIP, the global variableuip_connis set to
point to theuip_connstructure for the connection that currently is handled, and is called the "current

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 23

connection". The fields in theuip_connstructure for the current connection can be used, e.g., to distinguish
between different services, or to check to which IP address the connection is connected. One typical
use would be to inspect the uip_conn->lport (the local TCP port number) to decide which service the
connection should provide. For instance, an application might decide to act as an HTTP server if the value
of uip_conn->lport is equal to 80 and act as a TELNET server if the value is 23.

Receiving Data If the uIP test functionuip_newdata()is non-zero, the remote host of the connection has
sent new data. The uip_appdata pointer point to the actual data. The size of the data is obtained through
the uIP functionuip_datalen(). The data is not buffered by uIP, but will be overwritten after the application
function returns, and the application will therefor have to either act directly on the incoming data, or by
itself copy the incoming data into a buffer for later processing.

Sending Data When sending data, uIP adjusts the length of the data sent by the application according to
the available buffer space and the current TCP window advertised by the receiver. The amount of buffer
space is dictated by the memory configuration. It is therefore possible that all data sent from the application
does not arrive at the receiver, and the application may use theuip_mss()function to see how much data
that actually will be sent by the stack.

The application sends data by using the uIP functionuip_send(). Theuip_send()function takes two argu-
ments; a pointer to the data to be sent and the length of the data. If the application needs RAM space for
producing the actual data that should be sent, the packet buffer (pointed to by the uip_appdata pointer) can
be used for this purpose.

The application can send only one chunk of data at a time on a connection and it is not possible to call
uip_send()more than once per application invocation; only the data from the last call will be sent.

Retransmitting Data Retransmissions are driven by the periodic TCP timer. Every time the periodic
timer is invoked, the retransmission timer for each connection is decremented. If the timer reaches zero,
a retransmission should be made. As uIP does not keep track of packet contents after they have been sent
by the device driver, uIP requires that the application takes an active part in performing the retransmission.
When uIP decides that a segment should be retransmitted, the application function is called with theuip_-
rexmit() flag set, indicating that a retransmission is required.

The application must check theuip_rexmit()flag and produce the same data that was previously sent. From
the application’s standpoint, performing a retransmission is not different from how the data originally was
sent. Therefor, the application can be written in such a way that the same code is used both for sending data
and retransmitting data. Also, it is important to note that even though the actual retransmission operation is
carried out by the application, it is the responsibility of the stack to know when the retransmission should
be made. Thus the complexity of the application does not necessarily increase because it takes an active
part in doing retransmissions.

Closing Connections The application closes the current connection by calling theuip_close()during an
application call. This will cause the connection to be cleanly closed. In order to indicate a fatal error, the
application might want to abort the connection and does so by calling theuip_abort()function.

If the connection has been closed by the remote end, the test functionuip_closed()is true. The application
may then do any necessary cleanups.

Reporting Errors There are two fatal errors that can happen to a connection, either that the connection
was aborted by the remote host, or that the connection retransmitted the last data too many times and has
been aborted. uIP reports this by calling the application function. The application can use the two test
functionsuip_aborted()anduip_timedout()to test for those error conditions.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 24

Polling When a connection is idle, uIP polls the application every time the periodic timer fires. The
application uses the test functionuip_poll() to check if it is being polled by uIP.

The polling event has two purposes. The first is to let the application periodically know that a connection is
idle, which allows the application to close connections that have been idle for too long. The other purpose
is to let the application send new data that has been produced. The application can only send data when
invoked by uIP, and therefore the poll event is the only way to send data on an otherwise idle connection.

Listening Ports uIP maintains a list of listening TCP ports. A new port is opened for listening with the
uip_listen()function. When a connection request arrives on a listening port, uIP creates a new connection
and calls the application function. The test functionuip_connected()is true if the application was invoked
because a new connection was created.

The application can check the lport field in theuip_connstructure to check to which port the new connection
was connected.

Opening Connections New connections can be opened from within uIP by the functionuip_connect().
This function allocates a new connection and sets a flag in the connection state which will open a TCP
connection to the specified IP address and port the next time the connection is polled by uIP. Theuip_-
connect()function returns a pointer to theuip_connstructure for the new connection. If there are no free
connection slots, the function returns NULL.

The functionuip_ipaddr()may be used to pack an IP address into the two element 16-bit array used by uIP
to represent IP addresses.

Two examples of usage are shown below. The first example shows how to open a connection to TCP port
8080 of the remote end of the current connection. If there are not enough TCP connection slots to allow
a new connection to be opened, theuip_connect()function returns NULL and the current connection is
aborted byuip_abort().

void connect_example1_app(void) {
if(uip_connect(uip_conn->ripaddr, HTONS(8080)) == NULL) {

uip_abort();
}

}

The second example shows how to open a new connection to a specific IP address. No error checks are
made in this example.

void connect_example2(void) {
uip_addr_t ipaddr;

uip_ipaddr(ipaddr, 192,168,0,1);
uip_connect(ipaddr, HTONS(8080));

}

6.7.9 Examples

This section presents a number of very simple uIP applications. The uIP code distribution contains several
more complex applications.

6.7.9.1 A Very Simple Application This first example shows a very simple application. The applica-
tion listens for incoming connections on port 1234. When a connection has been established, the application
replies to all data sent to it by saying "ok"

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 25

The implementation of this application is shown below. The application is initialized with the function
called example1_init() and the uIP callback function is called example1_app(). For this application, the
configuration variable UIP_APPCALL should be defined to be example1_app().

void example1_init(void) {
uip_listen(HTONS(1234));

}

void example1_app(void) {
if(uip_newdata() || uip_rexmit()) {

uip_send("ok\n", 3);
}

}

The initialization function calls the uIP functionuip_listen()to register a listening port. The actual applica-
tion function example1_app() uses the test functionsuip_newdata()anduip_rexmit()to determine why it
was called. If the application was called because the remote end has sent it data, it responds with an "ok".
If the application function was called because data was lost in the network and has to be retransmitted, it
also sends an "ok". Note that this example actually shows a complete uIP application. It is not required for
an application to deal with all types of events such asuip_connected()or uip_timedout().

6.7.9.2 A More Advanced Application This second example is slightly more advanced than the pre-
vious one, and shows how the application state field in theuip_connstructure is used.

This application is similar to the first application in that it listens to a port for incoming connections and
responds to data sent to it with a single "ok". The big difference is that this application prints out a
welcoming "Welcome!" message when the connection has been established.

This seemingly small change of operation makes a big difference in how the application is implemented.
The reason for the increase in complexity is that if data should be lost in the network, the application must
know what data to retransmit. If the "Welcome!" message was lost, the application must retransmit the
welcome and if one of the "ok" messages is lost, the application must send a new "ok".

The application knows that as long as the "Welcome!" message has not been acknowledged by the remote
host, it might have been dropped in the network. But once the remote host has sent an acknowledgment
back, the application can be sure that the welcome has been received and knows that any lost data must be
an "ok" message. Thus the application can be in either of two states: either in the WELCOME-SENT state
where the "Welcome!" has been sent but not acknowledged, or in the WELCOME-ACKED state where the
"Welcome!" has been acknowledged.

When a remote host connects to the application, the application sends the "Welcome!" message and sets
it’s state to WELCOME-SENT. When the welcome message is acknowledged, the application moves to
the WELCOME-ACKED state. If the application receives any new data from the remote host, it responds
by sending an "ok" back.

If the application is requested to retransmit the last message, it looks at in which state the application is. If
the application is in the WELCOME-SENT state, it sends a "Welcome!" message since it knows that the
previous welcome message hasn’t been acknowledged. If the application is in the WELCOME-ACKED
state, it knows that the last message was an "ok" message and sends such a message.

The implementation of this application is seen below. This configuration settings for the application is
follows after its implementation.

struct example2_state {
enum {WELCOME_SENT, WELCOME_ACKED} state;

};

void example2_init(void) {
uip_listen(HTONS(2345));

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 26

}

void example2_app(void) {
struct example2_state *s;

s = (struct example2_state *)uip_conn->appstate;

if(uip_connected()) {
s->state = WELCOME_SENT;
uip_send("Welcome!\n", 9);
return;

}

if(uip_acked() && s->state == WELCOME_SENT) {
s->state = WELCOME_ACKED;

}

if(uip_newdata()) {
uip_send("ok\n", 3);

}

if(uip_rexmit()) {
switch(s->state) {
case WELCOME_SENT:

uip_send("Welcome!\n", 9);
break;

case WELCOME_ACKED:
uip_send("ok\n", 3);
break;

}
}

}

The configuration for the application:

#define UIP_APPCALL example2_app
#define UIP_APPSTATE_SIZE sizeof(struct example2_state)

6.7.9.3 Differentiating Between Applications If the system should run multiple applications, one
technique to differentiate between them is to use the TCP port number of either the remote end or the
local end of the connection. The example below shows how the two examples above can be combined into
one application.

void example3_init(void) {
example1_init();
example2_init();

}

void example3_app(void) {
switch(uip_conn->lport) {
case HTONS(1234):

example1_app();
break;

case HTONS(2345):
example2_app();
break;

}
}

6.7.9.4 Utilizing TCP Flow Control This example shows a simple application that connects to a host,
sends an HTTP request for a file and downloads it to a slow device such a disk drive. This shows how to
use the flow control functions of uIP.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 27

void example4_init(void) {
uip_ipaddr_t ipaddr;
uip_ipaddr(ipaddr, 192,168,0,1);
uip_connect(ipaddr, HTONS(80));

}

void example4_app(void) {
if(uip_connected() || uip_rexmit()) {

uip_send("GET /file HTTP/1.0\r\nServer:192.186.0.1\r\n\r\n",
48);

return;
}

if(uip_newdata()) {
device_enqueue(uip_appdata, uip_datalen());
if(device_queue_full()) {

uip_stop();
}

}

if(uip_poll() && uip_stopped()) {
if(!device_queue_full()) {

uip_restart();
}

}
}

When the connection has been established, an HTTP request is sent to the server. Since this is the only
data that is sent, the application knows that if it needs to retransmit any data, it is that request that should
be retransmitted. It is therefore possible to combine these two events as is done in the example.

When the application receives new data from the remote host, it sends this data to the device by using
the function device_enqueue(). It is important to note that this example assumes that this function copies
the data into its own buffers. The data in the uip_appdata buffer will be overwritten by the next incoming
packet.

If the device’s queue is full, the application stops the data from the remote host by calling the uIP function
uip_stop(). The application can then be sure that it will not receive any new data untiluip_restart()is called.
The application polling event is used to check if the device’s queue is no longer full and if so, the data flow
is restarted withuip_restart().

6.7.9.5 A Simple Web Server This example shows a very simple file server application that listens to
two ports and uses the port number to determine which file to send. If the files are properly formatted, this
simple application can be used as a web server with static pages. The implementation follows.

struct example5_state {
char *dataptr;
unsigned int dataleft;

};

void example5_init(void) {
uip_listen(HTONS(80));
uip_listen(HTONS(81));

}

void example5_app(void) {
struct example5_state *s;
s = (struct example5_state)uip_conn->appstate;

if(uip_connected()) {
switch(uip_conn->lport) {
case HTONS(80):

s->dataptr = data_port_80;

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 28

s->dataleft = datalen_port_80;
break;

case HTONS(81):
s->dataptr = data_port_81;
s->dataleft = datalen_port_81;
break;

}
uip_send(s->dataptr, s->dataleft);
return;

}

if(uip_acked()) {
if(s->dataleft < uip_mss()) {

uip_close();
return;

}
s->dataptr += uip_conn->len;
s->dataleft -= uip_conn->len;
uip_send(s->dataptr, s->dataleft);

}
}

The application state consists of a pointer to the data that should be sent and the size of the data that is left
to send. When a remote host connects to the application, the local port number is used to determine which
file to send. The first chunk of data is sent usinguip_send(). uIP makes sure that no more than MSS bytes
of data is actually sent, even though s->dataleft may be larger than the MSS.

The application is driven by incoming acknowledgments. When data has been acknowledged, new data
can be sent. If there is no more data to send, the connection is closed usinguip_close().

6.7.9.6 Structured Application Program Design When writing larger programs using uIP it is useful
to be able to utilize the uIP API in a structured way. The following example provides a structured design
that has showed itself to be useful for writing larger protocol implementations than the previous exam-
ples showed here. The program is divided into an uIP event handler function that calls seven application
handler functions that process new data, act on acknowledged data, send new data, deal with connection
establishment or closure events and handle errors. The functions are called newdata(), acked(), senddata(),
connected(), closed(), aborted(), and timedout(), and needs to be written specifically for the protocol that
is being implemented.

The uIP event handler function is shown below.

void example6_app(void) {
if(uip_aborted()) {

aborted();
}
if(uip_timedout()) {

timedout();
}
if(uip_closed()) {

closed();
}
if(uip_connected()) {

connected();
}
if(uip_acked()) {

acked();
}
if(uip_newdata()) {

newdata();
}
if(uip_rexmit() ||

uip_newdata() ||

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 29

uip_acked() ||
uip_connected() ||
uip_poll()) {

senddata();
}

}

The function starts with dealing with any error conditions that might have happened by checking ifuip_-
aborted()or uip_timedout()are true. If so, the appropriate error function is called. Also, if the connection
has been closed, the closed() function is called to the it deal with the event.

Next, the function checks if the connection has just been established by checking ifuip_connected()is true.
The connected() function is called and is supposed to do whatever needs to be done when the connection
is established, such as intializing the application state for the connection. Since it may be the case that data
should be sent out, the senddata() function is called to deal with the outgoing data.

The following very simple application serves as an example of how the application handler functions might
look. This application simply waits for any data to arrive on the connection, and responds to the data by
sending out the message "Hello world!". To illustrate how to develop an application state machine, this
message is sent in two parts, first the "Hello" part and then the "world!" part.

#define STATE_WAITING 0
#define STATE_HELLO 1
#define STATE_WORLD 2

struct example6_state {
u8_t state;
char *textptr;
int textlen;

};

static void aborted(void) {}
static void timedout(void) {}
static void closed(void) {}

static void connected(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

s->state = STATE_WAITING;
s->textlen = 0;

}

static void newdata(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

if(s->state == STATE_WAITING) {
s->state = STATE_HELLO;
s->textptr = "Hello ";
s->textlen = 6;

}
}

static void acked(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

s->textlen -= uip_conn->len;
s->textptr += uip_conn->len;
if(s->textlen == 0) {

switch(s->state) {
case STATE_HELLO:

s->state = STATE_WORLD;
s->textptr = "world!\n";
s->textlen = 7;
break;

case STATE_WORLD:

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 30

uip_close();
break;

}
}

}

static void senddata(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

if(s->textlen > 0) {
uip_send(s->textptr, s->textlen);

}
}

The application state consists of a "state" variable, a "textptr" pointer to a text message and the "textlen"
length of the text message. The "state" variable can be either "STATE_WAITING", meaning that the
application is waiting for data to arrive from the network, "STATE_HELLO", in which the application is
sending the "Hello" part of the message, or "STATE_WORLD", in which the application is sending the
"world!" message.

The application does not handle errors or connection closing events, and therefore the aborted(), timedout()
and closed() functions are implemented as empty functions.

The connected() function will be called when a connection has been established, and in this case sets the
"state" variable to be "STATE_WAITING" and the "textlen" variable to be zero, indicating that there is no
message to be sent out.

When new data arrives from the network, the newdata() function will be called by the event handler func-
tion. The newdata() function will check if the connection is in the "STATE_WAITING" state, and if so
switches to the "STATE_HELLO" state and registers a 6 byte long "Hello " message with the connection.
This message will later be sent out by the senddata() function.

The acked() function is called whenever data that previously was sent has been acknowleged by the receiv-
ing host. This acked() function first reduces the amount of data that is left to send, by subtracting the length
of the previously sent data (obtained from "uip_conn→ len") from the "textlen" variable, and also adjusts
the "textptr" pointer accordingly. It then checks if the "textlen" variable now is zero, which indicates that all
data now has been successfully received, and if so changes application state. If the application was in the
"STATE_HELLO" state, it switches state to "STATE_WORLD" and sets up a 7 byte "world!\n" message
to be sent. If the application was in the "STATE_WORLD" state, it closes the connection.

Finally, the senddata() function takes care of actually sending the data that is to be sent. It is called by
the event handler function when new data has been received, when data has been acknowledged, when
a new connection has been established, when the connection is polled because of inactivity, or when a
retransmission should be made. The purpose of the senddata() function is to optionally format the data that
is to be sent, and to call theuip_send()function to actually send out the data. In this particular example,
the function simply callsuip_send()with the appropriate arguments if data is to be sent, after checking if
data should be sent out or not as indicated by the "textlen" variable.

It is important to note that the senddata() function never should affect the application state; this should only
be done in the acked() and newdata() functions.

6.7.10 Protocol Implementations

The protocols in the TCP/IP protocol suite are designed in a layered fashion where each protocol performs
a specific function and the interactions between the protocol layers are strictly defined. While the layered
approach is a good way to design protocols, it is not always the best way to implement them. In uIP, the
protocol implementations are tightly coupled in order to save code space.

This section gives detailed information on the specific protocol implementations in uIP.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 31

6.7.10.1 IP — Internet Protocol When incoming packets are processed by uIP, the IP layer is the first
protocol that examines the packet. The IP layer does a few simple checks such as if the destination IP
address of the incoming packet matches any of the local IP address and verifies the IP header checksum.
Since there are no IP options that are strictly required and because they are very uncommon, any IP options
in received packets are dropped.

IP Fragment Reassembly IP fragment reassembly is implemented using a separate buffer that holds the
packet to be reassembled. An incoming fragment is copied into the right place in the buffer and a bit map
is used to keep track of which fragments have been received. Because the first byte of an IP fragment is
aligned on an 8-byte boundary, the bit map requires a small amount of memory. When all fragments have
been reassembled, the resulting IP packet is passed to the transport layer. If all fragments have not been
received within a specified time frame, the packet is dropped.

The current implementation only has a single buffer for holding packets to be reassembled, and therefore
does not support simultaneous reassembly of more than one packet. Since fragmented packets are uncom-
mon, this ought to be a reasonable decision. Extending the implementation to support multiple buffers
would be straightforward, however.

Broadcasts and Multicasts IP has the ability to broadcast and multicast packets on the local network.
Such packets are addressed to special broadcast and multicast addresses. Broadcast is used heavily in
many UDP based protocols such as the Microsoft Windows file-sharing SMB protocol. Multicast is pri-
marily used in protocols used for multimedia distribution such as RTP. TCP is a point-to-point protocol and
does not use broadcast or multicast packets. uIP current supports broadcast packets as well as sending mul-
ticast packets. Joining multicast groups (IGMP) and receiving non-local multicast packets is not currently
supported.

6.7.10.2 ICMP — Internet Control Message Protocol The ICMP protocol is used for reporting soft
error conditions and for querying host parameters. Its main use is, however, the echo mechanism which is
used by the "ping" program.

The ICMP implementation in uIP is very simple as itis restricted to only implement ICMP echo messages.
Replies to echo messages are constructed by simply swapping the source and destination IP addresses of
incoming echo requests and rewriting the ICMP header with the Echo-Reply message type. The ICMP
checksum is adjusted using standard techniques (see RFC1624).

Since only the ICMP echo message is implemented, there is no support for Path MTU discovery or ICMP
redirect messages. Neither of these is strictly required for interoperability; they are performance enhance-
ment mechanisms.

6.7.10.3 TCP — Transmission Control Protocol The TCP implementation in uIP is driven by incom-
ing packets and timer events. Incoming packets are parsed by TCP and if the packet contains data that is to
be delivered to the application, the application is invoked by the means of the application function call. If
the incoming packet acknowledges previously sent data, the connection state is updated and the application
is informed, allowing it to send out new data.

Listening Connections TCP allows a connection to listen for incoming connection requests. In uIP, a
listening connection is identified by the 16-bit port number and incoming connection requests are checked
against the list of listening connections. This list of listening connections is dynamic and can be altered by
the applications in the system.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 32

Sliding Window Most TCP implementations use a sliding window mechanism for sending data. Multiple
data segments are sent in succession without waiting for an acknowledgment for each segment.

The sliding window algorithm uses a lot of 32-bit operations and because 32-bit arithmetic is fairly expen-
sive on most 8-bit CPUs, uIP does not implement it. Also, uIP does not buffer sent packets and a sliding
window implementation that does not buffer sent packets will have to be supported by a complex appli-
cation layer. Instead, uIP allows only a single TCP segment per connection to be unacknowledged at any
given time.

It is important to note that even though most TCP implementations use the sliding window algorithm,
it is not required by the TCP specifications. Removing the sliding window mechanism does not affect
interoperability in any way.

Round-Trip Time Estimation TCP continuously estimates the current Round-Trip Time (RTT) of every
active connection in order to find a suitable value for the retransmission time-out.

The RTT estimation in uIP is implemented using TCP’s periodic timer. Each time the periodic timer
fires, it increments a counter for each connection that has unacknowledged data in the network. When an
acknowledgment is received, the current value of the counter is used as a sample of the RTT. The sample
is used together with Van Jacobson’s standard TCP RTT estimation function to calculate an estimate of the
RTT. Karn’s algorithm is used to ensure that retransmissions do not skew the estimates.

Retransmissions Retransmissions are driven by the periodic TCP timer. Every time the periodic timer
is invoked, the retransmission timer for each connection is decremented. If the timer reaches zero, a
retransmission should be made.

As uIP does not keep track of packet contents after they have been sent by the device driver, uIP requires
that the application takes an active part in performing the retransmission. When uIP decides that a segment
should be retransmitted, it calls the application with a flag set indicating that a retransmission is required.
The application checks the retransmission flag and produces the same data that was previously sent. From
the application’s standpoint, performing a retransmission is not different from how the data originally was
sent. Therefore the application can be written in such a way that the same code is used both for sending data
and retransmitting data. Also, it is important to note that even though the actual retransmission operation is
carried out by the application, it is the responsibility of the stack to know when the retransmission should
be made. Thus the complexity of the application does not necessarily increase because it takes an active
part in doing retransmissions.

Flow Control The purpose of TCP’s flow control mechanisms is to allow communication between hosts
with wildly varying memory dimensions. In each TCP segment, the sender of the segment indicates its
available buffer space. A TCP sender must not send more data than the buffer space indicated by the
receiver.

In uIP, the application cannot send more data than the receiving host can buffer. And application cannot
send more data than the amount of bytes it is allowed to send by the receiving host. If the remote host
cannot accept any data at all, the stack initiates the zero window probing mechanism.

Congestion Control The congestion control mechanisms limit the number of simultaneous TCP seg-
ments in the network. The algorithms used for congestion control are designed to be simple to implement
and require only a few lines of code.

Since uIP only handles one in-flight TCP segment per connection, the amount of simultaneous segments
cannot be further limited, thus the congestion control mechanisms are not needed.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 33

Urgent Data TCP’s urgent data mechanism provides an application-to-application notification mecha-
nism, which can be used by an application to mark parts of the data stream as being more urgent than the
normal stream. It is up to the receiving application to interpret the meaning of the urgent data.

In many TCP implementations, including the BSD implementation, the urgent data feature increases the
complexity of the implementation because it requires an asynchronous notification mechanism in an oth-
erwise synchronous API. As uIP already use an asynchronous event based API, the implementation of the
urgent data feature does not lead to increased complexity.

6.7.11 Performance

In TCP/IP implementations for high-end systems, processing time is dominated by the checksum calcu-
lation loop, the operation of copying packet data and context switching. Operating systems for high-end
systems often have multiple protection domains for protecting kernel data from user processes and user
processes from each other. Because the TCP/IP stack is run in the kernel, data has to be copied between the
kernel space and the address space of the user processes and a context switch has to be performed once the
data has been copied. Performance can be enhanced by combining the copy operation with the checksum
calculation. Because high-end systems usually have numerous active connections, packet demultiplexing
is also an expensive operation.

A small embedded device does not have the necessary processing power to have multiple protection do-
mains and the power to run a multitasking operating system. Therefore there is no need to copy data
between the TCP/IP stack and the application program. With an event based API there is no context switch
between the TCP/IP stack and the applications.

In such limited systems, the TCP/IP processing overhead is dominated by the copying of packet data from
the network device to host memory, and checksum calculation. Apart from the checksum calculation
and copying, the TCP processing done for an incoming packet involves only updating a few counters
and flags before handing the data over to the application. Thus an estimate of the CPU overhead of our
TCP/IP implementations can be obtained by calculating the amount of CPU cycles needed for the checksum
calculation and copying of a maximum sized packet.

6.7.11.1 The Impact of Delayed AcknowledgmentsMost TCP receivers implement the delayed ac-
knowledgment algorithm for reducing the number of pure acknowledgment packets sent. A TCP receiver
using this algorithm will only send acknowledgments for every other received segment. If no segment is
received within a specific time-frame, an acknowledgment is sent. The time-frame can be as high as 500
ms but typically is 200 ms.

A TCP sender such as uIP that only handles a single outstanding TCP segment will interact poorly with
the delayed acknowledgment algorithm. Because the receiver only receives a single segment at a time, it
will wait as much as 500 ms before an acknowledgment is sent. This means that the maximum possible
throughput is severely limited by the 500 ms idle time.

Thus the maximum throughput equation when sending data from uIP will be $p = s / (t + t_d)$ where s is
the segment size and t_d is the delayed acknowledgment timeout, which typically is between 200 and 500
ms. With a segment size of 1000 bytes, a round-trip time of 40 ms and a delayed acknowledgment timeout
of 200 ms, the maximum throughput will be 4166 bytes per second. With the delayed acknowledgment
algorithm disabled at the receiver, the maximum throughput would be 25000 bytes per second.

It should be noted, however, that since small systems running uIP are not very likely to have large amounts
of data to send, the delayed acknowledgmen t throughput degradation of uIP need not be very severe. Small
amounts of data sent by such a system will not span more than a single TCP segment, and would therefore
not be affected by the throughput degradation anyway.

The maximum throughput when uIP acts as a receiver is not affected by the delayed acknowledgment
throughput degradation.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 34

Note:
TheuIP TCP throughput booster hackmodule implements a hack that overcomes the problems with
the delayed acknowledgment throughput degradation.

Files

• file uip.h

Header file for the uIP TCP/IP stack.

• file uip.c

The uIP TCP/IP stack code.

Modules

• uIP configuration functions

The uIP configuration functions are used for setting run-time parameters in uIP such as IP addresses.

• Variables used in uIP device drivers

uIP has a few global variables that are used in device drivers for uIP.

• uIP Address Resolution Protocol

The Address Resolution Protocol ARP is used for mapping between IP addresses and link level addresses
such as the Ethernet MAC addresses.

• uIP TCP throughput booster hack

The basic uIP TCP implementation only allows each TCP connection to have a single TCP segment in flight
at any given time.

• uIP packet forwarding
• uIP hostname resolver functions

The uIP DNS resolver functions are used to lookup a hostname and map it to a numerical IP address.

• Uiparch

Data Structures

• structuip_stats

The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is set to 1.

• structuip_tcpip_hdr
• structuip_icmpip_hdr
• structuip_udpip_hdr
• structuip_eth_addr

Representation of a 48-bit Ethernet address.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 35

Defines

• #defineUIP_ACKDATA 1
• #defineUIP_NEWDATA 2
• #defineUIP_REXMIT 4
• #defineUIP_POLL8
• #defineUIP_CLOSE16
• #defineUIP_ABORT32
• #defineUIP_CONNECTED64
• #defineUIP_TIMEDOUT128
• #defineUIP_DATA 1
• #defineUIP_TIMER2
• #defineUIP_POLL_REQUEST3
• #defineUIP_UDP_SEND_CONN4
• #defineUIP_UDP_TIMER5
• #defineUIP_CLOSED0
• #defineUIP_SYN_RCVD1
• #defineUIP_SYN_SENT2
• #defineUIP_ESTABLISHED3
• #defineUIP_FIN_WAIT_14
• #defineUIP_FIN_WAIT_25
• #defineUIP_CLOSING6
• #defineUIP_TIME_WAIT 7
• #defineUIP_LAST_ACK8
• #defineUIP_TS_MASK15
• #defineUIP_STOPPED16
• #defineUIP_APPDATA_SIZE

The buffer size available for user data in theuip_bufbuffer.

• #defineUIP_PROTO_ICMP1
• #defineUIP_PROTO_TCP6
• #defineUIP_PROTO_UDP17
• #defineUIP_PROTO_ICMP658
• #defineUIP_IPH_LEN20
• #defineUIP_UDPH_LEN8
• #defineUIP_TCPH_LEN20
• #defineUIP_IPUDPH_LEN(UIP_UDPH_LEN + UIP_IPH_LEN)
• #defineUIP_IPTCPH_LEN(UIP_TCPH_LEN + UIP_IPH_LEN)
• #defineUIP_TCPIP_HLENUIP_IPTCPH_LEN
• #defineTCP_FIN0x01
• #defineTCP_SYN0x02
• #defineTCP_RST0x04
• #defineTCP_PSH0x08
• #defineTCP_ACK0x10
• #defineTCP_URG0x20
• #defineTCP_CTL0x3f
• #defineTCP_OPT_END0
• #defineTCP_OPT_NOOP1
• #defineTCP_OPT_MSS2
• #defineTCP_OPT_MSS_LEN4

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 36

• #defineICMP_ECHO_REPLY0
• #defineICMP_ECHO8
• #defineICMP6_ECHO_REPLY129
• #defineICMP6_ECHO128
• #defineICMP6_NEIGHBOR_SOLICITATION135
• #defineICMP6_NEIGHBOR_ADVERTISEMENT136
• #defineICMP6_FLAG_S(1 << 6)
• #defineICMP6_OPTION_SOURCE_LINK_ADDRESS1
• #defineICMP6_OPTION_TARGET_LINK_ADDRESS2
• #defineBUF ((structuip_tcpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineFBUF ((structuip_tcpip_hdr∗)&uip_reassbuf[0])
• #defineICMPBUF ((structuip_icmpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineUDPBUF((structuip_udpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineUIP_STAT(s)
• #defineUIP_LOG(m)

Typedefs

• typedef u16_tuip_ip4addr_t[2]

Repressentation of an IP address.

• typedef u16_tuip_ip6addr_t[8]
• typedefuip_ip4addr_tuip_ipaddr_t

Functions

• void uip_process(u8_t flag)
• u16_tuip_chksum(u16_t∗buf, u16_t len)

Calculate the Internet checksum over a buffer.

• u16_tuip_ipchksum(void)

Calculate the IP header checksum of the packet header in uip_buf.

• u16_tuip_tcpchksum(void)

Calculate the TCP checksum of the packet in uip_buf and uip_appdata.

• u16_tuip_udpchksum(void)

Calculate the UDP checksum of the packet in uip_buf and uip_appdata.

• void uip_setipid(u16_t id)

uIP initialization function.

• void uip_add32(u8_t∗op32, u16_t op16)
• void uip_init (void)

uIP initialization function.

• uip_udp_conn∗ uip_udp_new(uip_ipaddr_t∗ripaddr, u16_t rport)

Set up a new UDP connection.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 37

• void uip_unlisten(u16_t port)

Stop listening to the specified port.

• void uip_listen(u16_t port)

Start listening to the specified port.

• u16_thtons(u16_t val)

Convert 16-bit quantity from host byte order to network byte order.

• void uip_send(const void∗data, int len)

Send data on the current connection.

Variables

• uip_conn∗ uip_conn

Pointer to the current TCP connection.

• uip_connuip_conns[UIP_CONNS]
• uip_udp_conn∗ uip_udp_conn

The current UDP connection.

• uip_udp_connuip_udp_conns[UIP_UDP_CONNS]
• uip_statsuip_stat

The uIP TCP/IP statistics.

• u8_tuip_flags
• uip_ipaddr_tuip_hostaddr
• uip_ipaddr_tuip_netmask
• uip_ipaddr_tuip_draddr
• constuip_ipaddr_tuip_broadcast_addr
• uip_ipaddr_tuip_hostaddr
• uip_ipaddr_tuip_draddr
• uip_ipaddr_tuip_netmask
• constuip_ipaddr_tuip_broadcast_addr
• uip_eth_addruip_ethaddr= {{0,0,0,0,0,0}}
• u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

• void ∗ uip_appdata

Pointer to the application data in the packet buffer.

• void ∗ uip_sappdata
• u16_tuip_len

The length of the packet in the uip_buf buffer.

• u16_tuip_slen
• u8_tuip_flags
• uip_conn∗ uip_conn

Pointer to the current TCP connection.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 38

• uip_connuip_conns[UIP_CONNS]
• u16_tuip_listenports[UIP_LISTENPORTS]
• uip_udp_conn∗ uip_udp_conn

The current UDP connection.

• uip_udp_connuip_udp_conns[UIP_UDP_CONNS]
• u8_tuip_acc32[4]

4-byte array used for the 32-bit sequence number calculations.

6.7.12 Define Documentation

6.7.12.1 #define UIP_APPDATA_SIZE

The buffer size available for user data in theuip_bufbuffer.

This macro holds the available size for user data in theuip_bufbuffer. The macro is intended to be used
for checking bounds of available user data.

Example:

snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i);

Definition at line 1507 of file uip.h.

6.7.13 Function Documentation

6.7.13.1 u16_t htons (u16_tval)

Convert 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For
converting constants to network byte order, use theHTONS()macro instead.

Definition at line 1874 of file uip.c.

References HTONS.

Referenced by uip_chksum(), uip_ipchksum(), and uip_udp_new().

6.7.13.2 u16_t uip_chksum (u16_t∗ buf, u16_t len)

Calculate the Internet checksum over a buffer.

The Internet checksum is the one’s complement of the one’s complement sum of all 16-bit words in the
buffer.

See RFC1071.

Parameters:
buf A pointer to the buffer over which the checksum is to be computed.

len The length of the buffer over which the checksum is to be computed.

Returns:
The Internet checksum of the buffer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 39

Definition at line 303 of file uip.c.

References htons().

6.7.13.3 void uip_init (void)

uIP initialization function.

This function should be called at boot up to initilize the uIP TCP/IP stack.

Definition at line 371 of file uip.c.

References uip_udp_conn::lport, uip_conn::tcpstateflags, UIP_CLOSED, and UIP_LISTENPORTS.

6.7.13.4 u16_t uip_ipchksum (void)

Calculate the IP header checksum of the packet header in uip_buf.

The IP header checksum is the Internet checksum of the 20 bytes of the IP header.

Returns:
The IP header checksum of the IP header in the uip_buf buffer.

Definition at line 310 of file uip.c.

References DEBUG_PRINTF, htons(), UIP_IPH_LEN, and UIP_LLH_LEN.

Referenced by uip_process(), and uip_split_output().

6.7.13.5 void uip_listen (u16_tport)

Start listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_listen(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Definition at line 521 of file uip.c.

References UIP_LISTENPORTS.

Referenced by tcp_listen().

6.7.13.6 void uip_send (const void∗ data, int len)

Send data on the current connection.

This function is used to send out a single segment of TCP data. Only applications that have been invoked
by uIP for event processing can send data.

The amount of data that actually is sent out after a call to this funcion is determined by the maximum
amount of data TCP allows. uIP will automatically crop the data so that only the appropriate amount of
data is sent. The functionuip_mss()can be used to query uIP for the amount of data that actually will be
sent.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 40

Note:
This function does not guarantee that the sent data will arrive at the destination. If the data is lost in the
network, the application will be invoked with theuip_rexmit()event being set. The application will
then have to resend the data using this function.

Parameters:
data A pointer to the data which is to be sent.

len The maximum amount of data bytes to be sent.

Definition at line 1880 of file uip.c.

6.7.13.7 void uip_setipid (u16_tid)

uIP initialization function.

This function may be used at boot time to set the initial ip_id.

Definition at line 173 of file uip.c.

6.7.13.8 u16_t uip_tcpchksum (void)

Calculate the TCP checksum of the packet in uip_buf and uip_appdata.

The TCP checksum is the Internet checksum of data contents of the TCP segment, and a pseudo-header as
defined in RFC793.

Returns:
The TCP checksum of the TCP segment in uip_buf and pointed to by uip_appdata.

Definition at line 356 of file uip.c.

References UIP_PROTO_TCP.

Referenced by uip_process(), and uip_split_output().

6.7.13.9 structuip_udp_conn∗ uip_udp_new (uip_ipaddr_t ∗ ripaddr, u16_t rport)

Set up a new UDP connection.

This function sets up a new UDP connection. The function will automatically allocate an unused local port
for the new connection. However, another port can be chosen by using theuip_udp_bind()call, after the
uip_udp_new()function has been called.

Example:

uip_ipaddr_t addr;
struct uip_udp_conn *c;

uip_ipaddr(&addr, 192,168,2,1);
c = uip_udp_new(&addr, HTONS(12345));
if(c != NULL) {

uip_udp_bind(c, HTONS(12344));
}

Parameters:
ripaddr The IP address of the remote host.

rport The remote port number in network byte order.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 41

Returns:
Theuip_udp_connstructure for the new connection or NULL if no connection could be allocated.

Definition at line 465 of file uip.c.

References HTONS, htons(), uip_udp_conn::lport, NULL, uip_udp_conn::ripaddr, uip_udp_conn::rport,
uip_udp_conn::ttl, uip_ipaddr_copy, and UIP_TTL.

Referenced by udp_new().

6.7.13.10 u16_t uip_udpchksum (void)

Calculate the UDP checksum of the packet in uip_buf and uip_appdata.

The UDP checksum is the Internet checksum of data contents of the UDP segment, and a pseudo-header
as defined in RFC768.

Returns:
The UDP checksum of the UDP segment in uip_buf and pointed to by uip_appdata.

Referenced by uip_process().

6.7.13.11 void uip_unlisten (u16_tport)

Stop listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_unlisten(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Definition at line 510 of file uip.c.

References UIP_LISTENPORTS.

Referenced by tcp_unlisten().

6.7.14 Variable Documentation

6.7.14.1 void∗ uip_appdata

Pointer to the application data in the packet buffer.

This pointer points to the application data when the application is called. If the application wishes to send
data, the application may use this space to write the data into before callinguip_send().

Definition at line 135 of file uip.c.

Referenced by uip_arp_out(), uip_fw_forward(), and uip_split_output().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.7 The uIP TCP/IP stack 42

6.7.14.2 u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

The uip_buf array is used to hold incoming and outgoing packets. The device driver should place incoming
data into this buffer. When sending data, the device driver should read the link level headers and the TCP/IP
headers from this buffer. The size of the link level headers is configured by the UIP_LLH_LEN define.

Note:
The application data need not be placed in this buffer, so the device driver must read it from the place
pointed to by the uip_appdata pointer as illustrated by the following example:

void
devicedriver_send(void)
{

hwsend(&uip_buf[0], UIP_LLH_LEN);
if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) {

hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN);
} else {

hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN);
hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN);

}
}

Definition at line 131 of file uip.c.

Referenced by tr1001_poll(), uip_arp_out(), and uip_fw_forward().

6.7.14.3 structuip_conn∗ uip_conn

Pointer to the current TCP connection.

Theuip_connpointer can be used to access the current TCP connection.

Definition at line 155 of file uip.c.

6.7.14.4 structuip_conn∗ uip_conn

Pointer to the current TCP connection.

Theuip_connpointer can be used to access the current TCP connection.

Definition at line 155 of file uip.c.

6.7.14.5 u16_tuip_len

The length of the packet in the uip_buf buffer.

The global variable uip_len holds the length of the packet in the uip_buf buffer.

When the network device driver calls the uIP input function, uip_len should be set to the length of the
packet in the uip_buf buffer.

When sending packets, the device driver should use the contents of the uip_len variable to determine the
length of the outgoing packet.

Definition at line 147 of file uip.c.

Referenced by tcpip_input(), uip_arp_arpin(), uip_arp_out(), uip_fw_forward(), uip_fw_output(), and
uip_split_output().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.8 Contiki processes 43

6.7.14.6 structuip_statsuip_stat

The uIP TCP/IP statistics.

This is the variable in which the uIP TCP/IP statistics are gathered.

6.8 Contiki processes

6.8.1 Detailed Description

A process in Contiki consists of a singleProtothreadsprotothread.

Files

• file process.c

Implementation of the Contiki process kernel.

• file process.h

Header file for the Contiki process interface.

Defines

• #definePROCESS_STATE_NONE0
• #definePROCESS_STATE_INIT1
• #definePROCESS_STATE_RUNNING2
• #definePROCESS_STATE_NEEDS_POLL3

Typedefs

• typedef unsigned charprocess_event_t
• typedef void∗ process_data_t
• typedef unsigned charprocess_num_events_t

Functions

• process_event_tprocess_alloc_event(void)

Allocate a global event number.

• void process_start(structprocess∗p, char∗arg)

Start a process.

• void process_exit(structprocess∗p)

Cause a process to exit.

• void process_init(void)

Initialize the process module.

• int process_run(void)

Run the system once - call poll handlers and process one event.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.8 Contiki processes 44

• int process_post(structprocess∗p, process_event_tev,process_data_tdata)

Post an asynchronous event.

• void process_post_synch(structprocess∗p, process_event_tev,process_data_tdata)

Post a synchronous event to a process.

• void process_poll(structprocess∗p)

Request a process to be polled.

Variables

• process∗ process_list= NULL
• process∗ process_current= NULL

6.8.2 Function Documentation

6.8.2.1 process_event_tprocess_alloc_event (void)

Allocate a global event number.

Returns:
The allocated event number

In Contiki, event numbers above 128 are global and may be posted from one process to another. This
function allocates one such event number.

Note:
There currently is no way to deallocate an allocated event number.

Definition at line 90 of file process.c.

Referenced by PROCESS_THREAD().

6.8.2.2 void process_exit (structprocess∗ p)

Cause a process to exit.

Parameters:
p The process that is to be exited

This function causes a process to exit. The process can either be the currently executing process, or another
process that is currently running.

See also:
PROCESS_CURRENT()

Definition at line 203 of file process.c.

References PROCESS_CURRENT.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.8 Contiki processes 45

6.8.2.3 void process_init (void)

Initialize the process module.

This function initializes the process module and should be called by the system boot-up code.

Definition at line 209 of file process.c.

References NULL, and PROCESS_EVENT_MAX.

6.8.2.4 void process_poll (structprocess∗ p)

Request a process to be polled.

This function typically is called from an interrupt handler to cause a process to be polled.

Parameters:
p A pointer to the process’ process structure.

Examples:
example-packet-service.c.

Definition at line 384 of file process.c.

References NULL, PROCESS_STATE_NEEDS_POLL, PROCESS_STATE_RUNNING, and state.

Referenced by etimer_request_poll(), and PROCESS_THREAD().

6.8.2.5 int process_post (structprocess∗ p, process_event_tev, process_data_tdata)

Post an asynchronous event.

This function posts an asynchronous event to one or more processes. The handing of the event is deferred
until the target process is scheduled by the kernel. An event can be broadcast to all processes, in which
case all processes in the system will be scheduled to handle the event.

Parameters:
ev The event to be posted.

data The auxillary data to be sent with the event

p The process to which the event should be posted, or PROCESS_BROADCAST if the event should
be posted to all processes.

Return values:
PROCESS_ERR_OKThe event could be posted.

PROCESS_ERR_FULLThe event queue was full and the event could not be posted.

Definition at line 356 of file process.c.

References PROCESS_ERR_FULL, and PROCESS_ERR_OK.

Referenced by mt_post(), process_start(), PROCESS_THREAD(), program_handler_load(), resolv_conf(),
resolv_found(), service_remove(), tcpip_poll_tcp(), and tcpip_poll_udp().

6.8.2.6 void process_post_synch (structprocess∗ p, process_event_tev, process_data_tdata)

Post a synchronous event to a process.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.9 Event timers 46

Parameters:
p A pointer to the process’ process structure.

ev The event to be posted.

data A pointer to additional data that is posted together with the event.

Definition at line 375 of file process.c.

Referenced by PROCESS_THREAD(), tcpip_input(), and tcpip_uipcall().

6.8.2.7 int process_run (void)

Run the system once - call poll handlers and process one event.

This function should be called repeatedly from the main() program to actuall run the Contiki system. It
calls the necessary poll handlers, and processes one event. The function returns the number of events that
are waiting in the event queue so that the caller may choose to put the CPU to sleep when there are no
pending events.

Returns:
The number of events that are currently waiting in the event queue.

Definition at line 342 of file process.c.

6.8.2.8 void process_start (structprocess∗ p, char ∗ arg)

Start a process.

Parameters:
p A pointer to a process structure.

arg An argument pointer that can be passed to the new process

Definition at line 96 of file process.c.

References next, NULL, PROCESS_EVENT_INIT, process_post(), PROCESS_STATE_INIT, pt, PT_-
INIT, and state.

Referenced by mtp_start().

6.9 Event timers

6.9.1 Detailed Description

Event timers provides a way to generate timed events.

An event timer will post an event to the process that set the timer when the event timer expires.

An event timer is declared as astruct etimer and all access to the event timer is made by a pointer to
the declared event timer.

See also:
Simple timer library
Clock library(used by thetimer library)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.9 Event timers 47

Files

• file etimer.c

Event timer library implementation.

• file etimer.h

Event timer header file.

Data Structures

• structetimer

A timer.

Functions

• PROCESS_THREAD(etimer_process, ev, data)
• void etimer_request_poll(void)

Make the event timer aware that the clock has changed.

• void etimer_set(structetimer∗et, clock_time_t interval)

Set an event timer.

• void etimer_reset(structetimer∗et)

Reset an event timer with the same interval as was previously set.

• void etimer_restart(structetimer∗et)

Restart an event timer from the current point in time.

• void etimer_adjust(structetimer∗et, int timediff)

Adjust the expiration time for an event timer.

• int etimer_expired(structetimer∗et)

Check if an event timer has expired.

• clock_time_tetimer_expiration_time(structetimer∗et)

Get the expiration time for the event timer.

• clock_time_tetimer_start_time(structetimer∗et)

Get the start time for the event timer.

• int etimer_pending(void)

Check if there are any non-expired event timers.

• clock_time_tetimer_next_expiration_time(void)

Get next event timer expiration time.

• void etimer_stop(structetimer∗et)

Stop a pending event timer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.9 Event timers 48

6.9.2 Function Documentation

6.9.2.1 void etimer_adjust (structetimer ∗ et, int td)

Adjust the expiration time for an event timer.

Parameters:
et A pointer to the event timer.

td The time difference to adjust the expiration time with.

This function is used to adjust the time the event timer will expire. It can be used to synchronize periodic
timers without the need to restart the timer or change the timer interval.

Note:
This function should only be used for small adjustments. For large adjustments useetimer_set()in-
stead.
A periodic timer will drift unless theetimer_reset()function is used.

See also:
etimer_set()
etimer_reset()

Definition at line 194 of file etimer.c.

References timer::start, and timer.

6.9.2.2 clock_time_t etimer_expiration_time (structetimer ∗ et)

Get the expiration time for the event timer.

Parameters:
et A pointer to the event timer

Returns:
The expiration time for the event timer.

This function returns the expiration time for an event timer.

Definition at line 207 of file etimer.c.

References timer::interval, timer::start, and timer.

6.9.2.3 int etimer_expired (structetimer ∗ et)

Check if an event timer has expired.

Parameters:
et A pointer to the event timer

Returns:
Non-zero if the timer has expired, zero otherwise.

This function tests if an event timer has expired and returns true or false depending on its status.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.9 Event timers 49

Examples:
example-program.c, example-service.c, andexample-use-service.c.

Definition at line 201 of file etimer.c.

References p, and PROCESS_NONE.

Referenced by tcpip_uipcall().

6.9.2.4 clock_time_t etimer_next_expiration_time (void)

Get next event timer expiration time.

Returns:
Next expiration time of all pending event timers. If there are no pending event timers this function
returns 0.

This functions returns next expiration time of all pending event timers.

Definition at line 225 of file etimer.c.

References etimer_pending().

6.9.2.5 int etimer_pending (void)

Check if there are any non-expired event timers.

Returns:
True if there are active event timers, false if there are no active timers.

This function checks if there are any active event timers that have not expired.

Definition at line 219 of file etimer.c.

References NULL.

Referenced by etimer_next_expiration_time().

6.9.2.6 void etimer_request_poll (void)

Make the event timer aware that the clock has changed.

This function is used to inform the event timer module that the system clock has been updated. Typically,
this function would be called from the timer interrupt handler when the clock has ticked.

Definition at line 143 of file etimer.c.

References process_poll().

Referenced by PROCESS_THREAD().

6.9.2.7 void etimer_reset (structetimer ∗ et)

Reset an event timer with the same interval as was previously set.

Parameters:
et A pointer to the event timer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.9 Event timers 50

This function resets the event timer with the same interval that was given to the event timer with the
etimer_set()function. The start point of the interval is the exact time that the event timer last expired.
Therefore, this function will cause the timer to be stable over time, unlike theetimer_restart()function.

See also:
etimer_restart()

Definition at line 180 of file etimer.c.

References timer, and timer_reset().

6.9.2.8 void etimer_restart (structetimer ∗ et)

Restart an event timer from the current point in time.

Parameters:
et A pointer to the event timer.

This function restarts the event timer with the same interval that was given to theetimer_set()function.
The event timer will start at the current time.

Note:
A periodic timer will drift if this function is used to reset it. For periodic timers, use theetimer_reset()
function instead.

See also:
etimer_reset()

Definition at line 187 of file etimer.c.

References timer, and timer_restart().

Referenced by tcpip_uipcall().

6.9.2.9 void etimer_set (structetimer ∗ et, clock_time_t interval)

Set an event timer.

Parameters:
et A pointer to the event timer

interval The interval before the timer expires.

This function is used to set an event timer for a time sometime in the future. When the event timer expires,
the event PROCESS_EVENT_TIMER will be posted to the process that called theetimer_set()function.

Examples:
example-program.c, example-service.c, andexample-use-service.c.

Definition at line 173 of file etimer.c.

References timer, and timer_set().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.10 The Contiki service mechanism 51

6.9.2.10 clock_time_t etimer_start_time (structetimer ∗ et)

Get the start time for the event timer.

Parameters:
et A pointer to the event timer

Returns:
The start time for the event timer.

This function returns the start time (when the timer was last set) for an event timer.

Definition at line 213 of file etimer.c.

References timer::start, and timer.

6.9.2.11 void etimer_stop (structetimer ∗ et)

Stop a pending event timer.

Parameters:
et A pointer to the pending event timer.

This function stops an event timer that has previously been set withetimer_set()or etimer_reset(). After
this function has been called, the event timer will not emit any event when it expires.

Definition at line 231 of file etimer.c.

References next, NULL, p, and PROCESS_NONE.

6.10 The Contiki service mechanism

6.10.1 Detailed Description

The Contiki service mechanism enables cross-process functions.

A service that is registered by one process can be accessed by other processes in the system. Services can
be transparently replaced at run-time.

A service has an interface that callers use to access the service’s functions. This interface typically is
defined in a header file that is included by all users of the service. A service interface is defined with the
SERVICE_INTERFACE()macro.

A service implementation is declared with theSERVICE()macro. TheSERVICE()statement specifies the
actual functions that are used to implement the service.

Every service has a controlling process. The controlling process registers the service with the system when
it starts, and is also notified if the service is removed or replaced. A process may register any number of
services.

Service registration is done with aSERVICE_REGISTER()statement. If a service with the same name is
already registered, this is removed before the new service is registered.

The SERVICE_CALL() macro is used to call a service. If the service to be called is not registered, the
SERVICE_CALL() statement does nothing. TheSERVICE_FIND()function can be used to check if a
particular service exists before callingSERVICE_CALL().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.11 Argument buffer 52

Files

• file service.h

Header file for the Contiki service mechanism.

• file service.c

Implementation of the Contiki service mechanism.

Data Structures

• structservice

Functions

• void service_register(structservice∗s)
• void service_remove(structservice∗s)
• service∗ service_find(const char∗name)

6.11 Argument buffer

6.11.1 Detailed Description

The argument buffer can be used when passing an argument from an exiting process to a process that has
not been created yet.

Since the exiting process will have exited when the new process is started, the argument cannot be passed
in any of the processes’ addres spaces. In such situations, the argument buffer can be used.

The argument buffer is statically allocated in memory and is globally accessible to all processes.

An argument buffer is allocated with thearg_alloc()function and deallocated with thearg_free()function.
Thearg_free()function is designed so that it can take any pointer, not just an argument buffer pointer. If
the pointer toarg_free()is not an argument buffer, the function does nothing.

Functions

• void arg_init(void)
• char∗ arg_alloc(char size)

Allocates an argument buffer.

• void arg_free(char∗arg)

Deallocates an argument buffer.

6.11.2 Function Documentation

6.11.2.1 char∗ arg_alloc (charsize)

Allocates an argument buffer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.12 The Contiki program loader 53

Parameters:
size The requested size of the buffer, in bytes.

Returns:
Pointer to allocated buffer, or NULL if no buffer could be allocated.

Note:
It currently is not possible to allocate argument buffers of any other size than 128 bytes.

Definition at line 104 of file arg.c.

6.11.2.2 void arg_free (char∗ arg)

Deallocates an argument buffer.

This function deallocates the argument buffer pointed to by the parameter, but only if the buffer actually is
an argument buffer and is allocated. It is perfectly safe to call this function with any pointer.

Parameters:
arg A pointer.

Definition at line 125 of file arg.c.

6.12 The Contiki program loader

6.12.1 Detailed Description

The Contiki program loader is an abstract interface for loading and starting programs.

Files

• file loader.h

Default definitions and error values for the Contiki program loader.

Modules

• ELF object code loader

The Contiki ELF loader is able to load and relocate ELF object files.

Data Structures

• structdsc

The DSC program description structure.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.12 The Contiki program loader 54

Defines

• #defineDSC(dscname, description, prgname,process, icon) const structdscdscname = {description,
prgname, icon}

Intantiating macro for the DSC structure.

• #defineDSC_HEADER(name) extern structdscname;
• #defineNULL 0
• #defineLOADER_OK0

No error.

• #defineLOADER_ERR_READ1

Read error.

• #defineLOADER_ERR_HDR2

Header error.

• #defineLOADER_ERR_OS3

Wrong OS.

• #defineLOADER_ERR_FMT4

Data format error.

• #defineLOADER_ERR_MEM5

Not enough memory.

• #defineLOADER_ERR_OPEN6

Could not open file.

• #defineLOADER_ERR_ARCH7

Wrong architecture.

• #defineLOADER_ERR_VERSION8

Wrong OS version.

• #defineLOADER_ERR_NOLOADER9

Program loading not supported.

• #defineLOADER_LOAD(name, arg) LOADER_ERR_NOLOADER

Load and execute a program.

• #defineLOADER_UNLOAD()

Unload a program from memory.

• #defineLOADER_LOAD_DSC(name) NULL

Load a DSC (program description).

• #defineLOADER_UNLOAD_DSC(dsc)

Unload a DSC (program description).

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.12 The Contiki program loader 55

6.12.1.1 The program description structure The Contiki DSC structure is used for describing pro-
grams.

It includes a string describing the program, the name of the program file on disk (or a pointer to the
programs initialization function for systems without disk support), a bitmap icon and a text version of the
same icon.

The DSC is saved into a file which can be loaded by programs such as the "Directory" application which
reads all DSC files on disk and presents the icons and descriptions in a window.

6.12.2 Define Documentation

6.12.2.1 #define DSC(dscname, description, prgname,process, icon) const struct dsc dscname =
{description, prgname, icon}

Intantiating macro for the DSC structure.

Parameters:
dscnameThe name of the C variable which is to contain the DSC.

description A one-line text describing the program.

prgname The name of the program on disk.

initfunc A pointer to the initialization function of the program.

icon A pointer to the CTK icon.

Definition at line 112 of file dsc.h.

6.12.2.2 #define LOADER_LOAD(name, arg) LOADER_ERR_NOLOADER

Load and execute a program.

This macro is used for loading and executing a program, and requires support from the architecture depen-
dant code. The actual program loading is made by architecture specific functions.

Note:
A program loaded withLOADER_LOAD() must call theLOADER_UNLOAD() function to unload
itself.

Parameters:
name The name of the program to be loaded.

arg A pointer argument that is passed to the program.

Returns:
A loader error, or LOADER_OK if loading was successful.

Definition at line 92 of file loader.h.

Referenced by PROCESS_THREAD().

6.12.2.3 #define LOADER_LOAD_DSC(name) NULL

Load a DSC (program description).

Loads a DSC (program description) into memory and returns a pointer to the dsc.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.13 Local continuations 56

Returns:
A pointer to the DSC or NULL if it could not be loaded.

Definition at line 116 of file loader.h.

6.12.2.4 #define LOADER_UNLOAD()

Unload a program from memory.

This macro is used for unloading a program and deallocating any memory that was allocated during the
loading of the program. This function must be called by the program itself.

Definition at line 104 of file loader.h.

6.12.2.5 #define LOADER_UNLOAD_DSC(dsc)

Unload a DSC (program description).

Unload a DSC from memory and deallocate any memory that was allocated when it was loaded.

Definition at line 126 of file loader.h.

6.13 Local continuations

6.13.1 Detailed Description

Local continuations form the basis for implementing protothreads.

A local continuation can beset in a specific function to capture the state of the function. After a local
continuation has been set can beresumedin order to restore the state of the function at the point where the
local continuation was set.

Files

• file lc.h

Local continuations.

• file lc-switch.h

Implementation of local continuations based on switch() statment.

• file lc-addrlabels.h

Implementation of local continuations based on the "Labels as values" feature of gcc.

Defines

• #defineLC_INIT(lc)

Initialize a local continuation.

• #defineLC_SET(lc)

Set a local continuation.

• #defineLC_RESUME(lc)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.13 Local continuations 57

Resume a local continuation.

• #defineLC_END(lc)

Mark the end of local continuation usage.

• #define__LC_SWTICH_H__
• #defineLC_INIT(s) s = 0;
• #defineLC_RESUME(s) switch(s) { case 0:
• #defineLC_SET(s) s = __LINE__; case __LINE__:
• #defineLC_END(s) }
• #defineLC_INIT(s) s = NULL
• #defineLC_RESUME(s)
• #defineLC_SET(s) do { ({ __label__ resume; resume: (s) = &&resume; }); }while(0)
• #defineLC_END(s)

Typedefs

• typedef unsigned shortlc_t

The local continuation type.

• typedef void∗ lc_t

6.13.2 Define Documentation

6.13.2.1 #define LC_END(lc)

Mark the end of local continuation usage.

The end operation signifies that local continuations should not be used any more in the function. This
operation is not needed for most implementations of local continuation, but is required by a few implemen-
tations.

Definition at line 108 of file lc.h.

6.13.2.2 #define LC_INIT(lc)

Initialize a local continuation.

This operation initializes the local continuation, thereby unsetting any previously set continuation state.

Definition at line 71 of file lc.h.

6.13.2.3 #define LC_RESUME(lc)

Resume a local continuation.

The resume operation resumes a previously set local continuation, thus restoring the state in which the
function was when the local continuation was set. If the local continuation has not been previously set, the
resume operation does nothing.

Definition at line 96 of file lc.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.14 Protothread semaphores 58

6.13.2.4 #define LC_SET(lc)

Set a local continuation.

The set operation saves the state of the function at the point where the operation is executed. As far as
the set operation is concerned, the state of the function doesnot include the call-stack or local (automatic)
variables, but only the program counter and such CPU registers that needs to be saved.

Definition at line 84 of file lc.h.

6.14 Protothread semaphores

6.14.1 Detailed Description

This module implements counting semaphores on top of protothreads.

Semaphores are a synchronization primitive that provide two operations: "wait" and "signal". The "wait"
operation checks the semaphore counter and blocks the thread if the counter is zero. The "signal" oper-
ation increases the semaphore counter but does not block. If another thread has blocked waiting for the
semaphore that is signalled, the blocked thread will become runnable again.

Semaphores can be used to implement other, more structured, synchronization primitives such as monitors
and message queues/bounded buffers (see below).

The following example shows how the producer-consumer problem, also known as the bounded buffer
problem, can be solved using protothreads and semaphores. Notes on the program follow after the example.

#include "pt-sem.h"

#define NUM_ITEMS 32
#define BUFSIZE 8

static struct pt_sem mutex, full, empty;

PT_THREAD(producer(struct pt *pt))
{

static int produced;

PT_BEGIN(pt);

for(produced = 0; produced < NUM_ITEMS; ++produced) {

PT_SEM_WAIT(pt, &full);

PT_SEM_WAIT(pt, &mutex);
add_to_buffer(produce_item());
PT_SEM_SIGNAL(pt, &mutex);

PT_SEM_SIGNAL(pt, &empty);
}

PT_END(pt);
}

PT_THREAD(consumer(struct pt *pt))
{

static int consumed;

PT_BEGIN(pt);

for(consumed = 0; consumed < NUM_ITEMS; ++consumed) {

PT_SEM_WAIT(pt, &empty);

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.14 Protothread semaphores 59

PT_SEM_WAIT(pt, &mutex);
consume_item(get_from_buffer());
PT_SEM_SIGNAL(pt, &mutex);

PT_SEM_SIGNAL(pt, &full);
}

PT_END(pt);
}

PT_THREAD(driver_thread(struct pt *pt))
{

static struct pt pt_producer, pt_consumer;

PT_BEGIN(pt);

PT_SEM_INIT(&empty, 0);
PT_SEM_INIT(&full, BUFSIZE);
PT_SEM_INIT(&mutex, 1);

PT_INIT(&pt_producer);
PT_INIT(&pt_consumer);

PT_WAIT_THREAD(pt, producer(&pt_producer) &
consumer(&pt_consumer));

PT_END(pt);
}

The program uses three protothreads: one protothread that implements the consumer, one thread that im-
plements the producer, and one protothread that drives the two other protothreads. The program uses three
semaphores: "full", "empty" and "mutex". The "mutex" semaphore is used to provide mutual exclusion
for the buffer, the "empty" semaphore is used to block the consumer is the buffer is empty, and the "full"
semaphore is used to block the producer is the buffer is full.

The "driver_thread" holds two protothread state variables, "pt_producer" and "pt_consumer". It is impor-
tant to note that both these variables are declared asstatic. If the static keyword is not used, both variables
are stored on the stack. Since protothreads do not store the stack, these variables may be overwritten dur-
ing a protothread wait operation. Similarly, both the "consumer" and "producer" protothreads declare their
local variables as static, to avoid them being stored on the stack.

Files

• file pt-sem.h

Counting semaphores implemented on protothreads.

Data Structures

• structpt_sem

Defines

• #definePT_SEM_INIT(s, c)

Initialize a semaphore.

• #definePT_SEM_WAIT(pt, s)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.15 Clock library 60

Wait for a semaphore.

• #definePT_SEM_SIGNAL(pt, s)

Signal a semaphore.

6.14.2 Define Documentation

6.14.2.1 #define PT_SEM_INIT(s, c)

Initialize a semaphore.

This macro initializes a semaphore with a value for the counter. Internally, the semaphores use an "unsigned
int" to represent the counter, and therefore the "count" argument should be within range of an unsigned int.

Parameters:
s (structpt_sem∗) A pointer to thept_semstruct representing the semaphore

c (unsigned int) The initial count of the semaphore.

Definition at line 183 of file pt-sem.h.

6.14.2.2 #define PT_SEM_SIGNAL(pt, s)

Signal a semaphore.

This macro carries out the "signal" operation on the semaphore. The signal operation increments the
counter inside the semaphore, which eventually will cause waiting protothreads to continue executing.

Parameters:
pt (struct pt∗) A pointer to the protothread (struct pt) in which the operation is executed.

s (structpt_sem∗) A pointer to thept_semstruct representing the semaphore

Definition at line 222 of file pt-sem.h.

6.14.2.3 #define PT_SEM_WAIT(pt, s)

Wait for a semaphore.

This macro carries out the "wait" operation on the semaphore. The wait operation causes the protothread
to block while the counter is zero. When the counter reaches a value larger than zero, the protothread will
continue.

Parameters:
pt (struct pt∗) A pointer to the protothread (struct pt) in which the operation is executed.

s (structpt_sem∗) A pointer to thept_semstruct representing the semaphore

Definition at line 201 of file pt-sem.h.

6.15 Clock library

6.15.1 Detailed Description

The clock library is the interface between Contiki and the platform specific clock functionality.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.16 Multi-threading library 61

The clock library performs a single function: measuring time. Additionally, the clock library provides a
macro, CLOCK_SECOND, which corresponds to one second of system time.

Note:
The clock library need in many cases not be used directly. Rather, thetimer libraryor theevent timers
should be used.

See also:
Timer library
Event timers

Defines

• #defineCLOCK_SECOND

A second, measured in system clock time.

Functions

• void clock_init (void)

Initialize the clock library.

• clock_time_tclock_time(void)

Get the current clock time.

6.15.2 Function Documentation

6.15.2.1 void clock_init (void)

Initialize the clock library.

This function initializes the clock library and should be called from the main() function of the system.

6.15.2.2 clock_time_t clock_time (void)

Get the current clock time.

This function returns the current system clock time.

Returns:
The current clock time, measured in system ticks.

Referenced by timer_expired(), timer_restart(), and timer_set().

6.16 Multi-threading library

6.16.1 Detailed Description

The event driven Contiki kernel does not provide multi-threading by itself - instead, preemptive multi-
threading is implemented as a library that optionally can be linked with applications.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.16 Multi-threading library 62

This library constists of two parts: a platform independent part, which is the same for all platforms on
which Contiki runs, and a platform specific part, which must be implemented specifically for the platform
that the multi-threading library should run.

Modules

• Architecture support for multi-threading

The Contiki multi-threading library requires some architecture specific support for seting up and switching
stacks.

• Multi-threading library convenience functions

The Contiki multi-threading library has an interface that might be hard to use.

Defines

• #defineMT_OK

No error.

Functions

• void mt_init (void)

Initializes the multithreading library.

• void mt_remove(void)

Uninstalls library and cleans up.

• void mt_start(structmt_thread∗thread, void(∗function)(void∗), void ∗data)

Starts a multithreading thread.

• void mt_exec(structmt_thread∗thread)

Execute parts of a thread.

• void mt_exec_event(structmt_thread∗thread,process_event_ts,process_data_tdata)

Post an event to a thread.

• void mt_yield(void)

Voluntarily give up the processor.

• void mt_post(structprocess∗p, process_event_tev,process_data_tdata)

Post an event to another process.

• void mt_wait(process_event_t∗ev,process_data_t∗data)

Block and wait for an event to occur.

• void mt_exit(void)

Exit a thread.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.16 Multi-threading library 63

6.16.2 Function Documentation

6.16.2.1 void mt_exec (structmt_thread ∗ thread)

Execute parts of a thread.

This function is called by a Contiki process and runs a thread. The function does not return until the thread
has yielded, or is preempted.

Note:
The thread must first be initialized with themt_init() function.

Parameters:
thread A pointer to a structmt_threadblock that must be allocated by the caller.

Definition at line 82 of file mt.c.

References MT_STATE_PEEK, MT_STATE_READY, MT_STATE_RUNNING, mtarch_exec(), mt_-
thread::state, and mt_thread::thread.

6.16.2.2 void mt_exec_event (structmt_thread ∗ thread, process_event_ts, process_data_tdata)

Post an event to a thread.

This function posts an event to a thread. The thread will be scheduled if the thread currently is waiting for
the posted event number. If the thread is not waiting for the event, this function does nothing.

Note:
The thread must first be initialized with themt_init() function.

Parameters:
thread A pointer to a structmt_threadblock that must be allocated by the caller.

s The event that is posted to the thread.

data An opaque pointer to a user specified structure containing additonal information, or NULL if no
additional information is needed.

Definition at line 104 of file mt.c.

References mt_thread::dataptr, mt_thread::evptr, MT_STATE_PEEK, MT_STATE_RUNNING, MT_-
STATE_WAITING, mtarch_exec(), mt_thread::state, and mt_thread::thread.

6.16.2.3 void mt_exit (void)

Exit a thread.

This function is called from within an executing thread in order to exit the thread. The function never
returns.

Definition at line 96 of file mt.c.

References MT_STATE_EXITED, mtarch_yield(), NULL, and mt_thread::state.

Referenced by mtp_exit().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.16 Multi-threading library 64

6.16.2.4 void mt_post (structprocess∗ p, process_event_tev, process_data_tdata)

Post an event to another process.

This function is called by a running thread and will emit a signal to another Contiki process. This will
cause the currently executing thread to yield.

Parameters:
p The process receiving the signal, or PROCESS_BROADCAST for a broadcast event.

ev The event to be posted.

data A pointer to a message that is to be delivered together with the signal.

Definition at line 134 of file mt.c.

References process_post().

6.16.2.5 void mt_start (structmt_thread ∗ thread, void(∗)(void ∗) function, void ∗ data)

Starts a multithreading thread.

Parameters:
thread Pointer to anmt_threadstruct that must have been previously allocated by the caller.

function A pointer to the entry function of the thread that is to be set up.

data A pointer that will be passed to the entry function.

Definition at line 72 of file mt.c.

References MT_STATE_READY, mtarch_start(), mt_thread::state, and mt_thread::thread.

Referenced by mtp_start().

6.16.2.6 void mt_wait (process_event_t∗ ev, process_data_t∗ data)

Block and wait for an event to occur.

This function can be called by a running thread in order to block and wait for an event. The function returns
when an event has occured. The event number and the associated data are placed in the variables pointed
to by the function arguments.

Parameters:
ev A pointer to a process_event_t variable. The variable will be filled with the number event that woke

the thread.

data A pointer to a process_data_t variable. The variable will be filled with the data associated with
the event that woke the thread.

Definition at line 147 of file mt.c.

References mt_thread::dataptr, mt_thread::evptr, MT_STATE_WAITING, mtarch_yield(), NULL, and
mt_thread::state.

6.16.2.7 void mt_yield (void)

Voluntarily give up the processor.

This function is called by a running thread in order to give up control of the CPU.

Definition at line 120 of file mt.c.

References MT_STATE_READY, mtarch_yield(), NULL, and mt_thread::state.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.17 Architecture support for multi-threading 65

6.17 Architecture support for multi-threading

6.17.1 Detailed Description

The Contiki multi-threading library requires some architecture specific support for seting up and switching
stacks.

This support requires three stack manipulation functions to be implemented:mtarch_start(), which sets up
the stack frame for a new thread,mtarch_exec(), which switches in the stack of a thread, andmtarch_-
yield(), which restores the kernel stack from a thread’s stack. Additionally, two functions for controlling
the preemption (if any) must be implemented: mtarch_preemption_start() and mtarch_preemption_stop().
If no preemption is used, these functions can be implemented as empty functions. Finally, the function
mtarch_init() is called bymt_init(), and can be used for initalization of timer interrupts, or any other
mechanisms required for correct operation of the architecture specific support funcions.

Files

• file mt.h

Header file for the preemptive multitasking library for Contiki.

Functions

• void mtarch_init(void)

Initialize the architecture specific support functions for the multi-thread library.

• void mtarch_remove(void)

Uninstall library and clean up.

• void mtarch_start(struct mtarch_thread∗thread, void(∗function)(void∗data), void∗data)

Setup the stack frame for a thread that is being started.

• void mtarch_yield(void)

Yield the processor.

• void mtarch_exec(struct mtarch_thread∗thread)

Start executing a thread.

6.17.2 Function Documentation

6.17.2.1 void mtarch_exec (struct mtarch_thread∗ thread)

Start executing a thread.

This function is called frommt_exec()and the purpose of the function is to start execution of the thread.
The function should switch in the stack of the thread, and does not return until the thread has explicitly
yielded (usingmt_yield()) or until it is preempted.

Referenced by mt_exec(), and mt_exec_event().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.18 Multi-threading library convenience functions 66

6.17.2.2 void mtarch_init (void)

Initialize the architecture specific support functions for the multi-thread library.

This function is implemented by the architecture specific functions for the multi-thread library and is called
by themt_init() function as part of the initialization of the library. Themtarch_init()function can be used
for, e.g., starting preemtion timers or other architecture specific mechanisms required for the operation of
the library.

Referenced by mt_init().

6.17.2.3 void mtarch_start (struct mtarch_thread∗ thread, void(∗)(void ∗data) function, void ∗
data)

Setup the stack frame for a thread that is being started.

This function is called by themt_start()function in order to set up the architecture specific stack of the
thread to be started.

Parameters:
thread A pointer to a struct mtarch_thread for the thread to be started.

function A pointer to the function that the thread will start executing the first time it is scheduled to
run.

data A pointer to the argument that the function should be passed.

Referenced by mt_start().

6.17.2.4 void mtarch_yield (void)

Yield the processor.

This function is called by themt_yield()function, which is called from the running thread in order to give
up the processor.

Referenced by mt_exit(), mt_peek(), mt_wait(), and mt_yield().

6.18 Multi-threading library convenience functions

6.18.1 Detailed Description

The Contiki multi-threading library has an interface that might be hard to use.

Therefore, the mtp module provides a simpler interface.

Example:

static void
example_thread_code(void *data)
{

while(1) {
printf("Test\n");
mt_yield();

}
}
MTP(example_thread, "Example thread", p1, t1, t1_idle);

int
main(int argc, char *argv[])

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.18 Multi-threading library convenience functions 67

{
mtp_start(&example_thread, example_thread_code, NULL);

}

Data Structures

• structmt_process

Defines

• #defineMT_PROCESS(name, strname)

Declare a multithreaded process.

Functions

• void mtp_start(structmt_process∗p, void(∗function)(void∗), void ∗data)

Start a thread.

• void mtp_exit(void)

6.18.2 Define Documentation

6.18.2.1 #define MT_PROCESS(name, strname)

Declare a multithreaded process.

This macro is used to declare a multithreaded process.

Definition at line 332 of file mt.h.

6.18.3 Function Documentation

6.18.3.1 void mtp_start (structmt_process∗ p, void(∗)(void ∗) function, void ∗ data)

Start a thread.

This function starts the process in which the thread is to run, and also sets up the thread to run within the
process. The function should be passed variable names declared with the MTP() macro.

Parameters:
t A pointer to a thread structure previously declared with MTP().

function A pointer to the function that the thread should start executing.

data A pointer that the function should be passed when first invocated.

Definition at line 170 of file mt.c.

References mt_start(), mt_process::p, process_start(), and mt_process::t.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.19 EEPROM API 68

6.19 EEPROM API

6.19.1 Detailed Description

The EEPROM API defines a common interface for EEPROM access on Contiki platforms.

A platform with EEPROM support must implement this API.

Files

• file eeprom.h

EEPROM functions.

Defines

• #defineEEPROM_NULL0

Typedefs

• typedef unsigned shorteeprom_addr_t

Functions

• void eeprom_write(eeprom_addr_taddr, unsigned char∗buf, int size)

Write a buffer into EEPROM.

• void eeprom_read(eeprom_addr_taddr, unsigned char∗buf, int size)

Read data from the EEPROM.

• void eeprom_init(void)

Initialize the EEPROM module.

6.19.2 Function Documentation

6.19.2.1 void eeprom_init (void)

Initialize the EEPROM module.

This function initializes the EEPROM module and is called from the bootup code.

6.19.2.2 void eeprom_read (eeprom_addr_taddr, unsigned char∗ buf, int size)

Read data from the EEPROM.

This function reads a number of bytes from the specified address in EEPROM and into a buffer in memory.

Parameters:
addr The address in EEPROM from which the data should be read.

buf A pointer to the buffer to which the data should be stored.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.20 Radio API 69

size The number of bytes to read.

Definition at line 241 of file eeprom.c.

References EEPROMADDRESS.

6.19.2.3 void eeprom_write (eeprom_addr_taddr, unsigned char∗ buf, int size)

Write a buffer into EEPROM.

This function writes a buffer of the specified size into EEPROM.

Parameters:
addr The address in EEPROM to which the buffer should be written.

buf A pointer to the buffer from which data is to be read.

size The number of bytes to write into EEPROM.

Definition at line 274 of file eeprom.c.

References EEPROMADDRESS, and EEPROMPAGEMASK.

6.20 Radio API

6.20.1 Detailed Description

The radio API module defines a set of functions that a radio device driver must implement.

Files

• file radio.h

Header file for the radio API.

Functions

• void radio_on(void)

Turn radio on.

• void radio_off(void)

Turn radio off.

6.20.2 Function Documentation

6.20.2.1 void radio_off (void)

Turn radio off.

This function turns the radio hardware off.

Definition at line 211 of file tr1001.c.

References OFF.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.21 ELF object code loader 70

6.20.2.2 void radio_on (void)

Turn radio on.

This function turns the radio hardware on.

Definition at line 223 of file tr1001.c.

References ON.

Referenced by tr1001_init().

6.21 ELF object code loader

6.21.1 Detailed Description

The Contiki ELF loader is able to load and relocate ELF object files.

Files

• file elfloader-tmp.h

Header file for the Contiki ELF loader.

Modules

• Architecture specific functionality for the ELF loader.

The architecture specific functionality for the Contiki ELF loader has to be implemented for each processor
type Contiki runs on.

Data Structures

• structelf32_rela

Defines

• #defineELFLOADER_OK0

Return value fromelfloader_load()indicating that loading worked.

• #defineELFLOADER_BAD_ELF_HEADER1

Return value fromelfloader_load()indicating that the ELF file had a bad header.

• #defineELFLOADER_NO_SYMTAB2

Return value fromelfloader_load()indicating that no symbol table could be find in the ELF file.

• #defineELFLOADER_NO_STRTAB3

Return value fromelfloader_load()indicating that no string table could be find in the ELF file.

• #defineELFLOADER_NO_TEXT4

Return value fromelfloader_load()indicating that the size of the .text segment was zero.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.21 ELF object code loader 71

• #defineELFLOADER_SYMBOL_NOT_FOUND5

Return value fromelfloader_load()indicating that a symbol specific symbol could not be found.

• #defineELFLOADER_SEGMENT_NOT_FOUND6

Return value fromelfloader_load()indicating that one of the required segments (.data, .bss, or .text) could
not be found.

• #defineELFLOADER_NO_STARTPOINT7

Return value fromelfloader_load()indicating that no starting point could be found in the loaded module.

• #defineELFLOADER_DATAMEMORY_SIZE0x100
• #defineELFLOADER_TEXTMEMORY_SIZE0x100

Typedefs

• typedef unsigned longelf32_word
• typedef signed longelf32_sword
• typedef unsigned shortelf32_half
• typedef unsigned longelf32_off
• typedef unsigned longelf32_addr

Functions

• void elfloader_init(void)

elfloader initialization function.

• int elfloader_load(int fd)

Load and relocate an ELF file.

Variables

• process∗∗ elfloader_autostart_processes

A pointer to the processes loaded withelfloader_load().

• charelfloader_unknown[30]

If elfloader_load()could not find a specific symbol, it is copied into this array.

6.21.2 Define Documentation

6.21.2.1 #define ELFLOADER_SYMBOL_NOT_FOUND 5

Return value fromelfloader_load()indicating that a symbol specific symbol could not be found.

If this value is returned fromelfloader_load(), the symbol has been copied into the elfloader_unknown[]
array.

Definition at line 91 of file elfloader-tmp.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.22 Architecture specific functionality for the ELF loader. 72

6.21.3 Function Documentation

6.21.3.1 void elfloader_init (void)

elfloader initialization function.

This function should be called at boot up to initilize the elfloader.

6.21.3.2 int elfloader_load (intfd)

Load and relocate an ELF file.

Parameters:
fd An open file descriptor.

Returns:
ELFLOADER_OK if loading and relocation worked. Otherwise an error value.

This function loads and relocates an ELF file. The ELF file must have been opened withcfs_open()prior
to calling this function.

If the function is able to load the ELF file, a pointer to the process structure in the model is stored in the
elfloader_loaded_process variable.

Note:
This function modifies the ELF file opened withcfs_open()! If the contents of the file is required to be
intact, the file must be backed up first.

6.22 Architecture specific functionality for the ELF loader.

6.22.1 Detailed Description

The architecture specific functionality for the Contiki ELF loader has to be implemented for each processor
type Contiki runs on.

Since the ELF format is slightly different for different processor types, the Contiki ELF loader is divided
into two parts: the generic ELF loader module (ELF object code loader) and the architecture specific part
(this module). The architecture specific part deals with memory allocation, code and data relocation, and
writing the relocated ELF code into program memory.

To port the Contiki ELF loader to a new processor type, this module has to be implemented for the new
processor type.

Files

• file elfloader-arch.h

Header file for the architecture specific parts of the Contiki ELF loader.

Functions

• void ∗ elfloader_arch_allocate_ram(int size)

Allocate RAM for a new module.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.22 Architecture specific functionality for the ELF loader. 73

• void ∗ elfloader_arch_allocate_rom(int size)

Allocate program memory for a new module.

• void elfloader_arch_relocate(int fd, unsigned int sectionoffset, structelf32_rela∗rela, char∗addr)

Perform a relocation.

• void elfloader_arch_write_text(int fd, unsigned int size, char∗mem)

Write the program code (text segment) into program memory.

6.22.2 Function Documentation

6.22.2.1 void∗ elfloader_arch_allocate_ram (intsize)

Allocate RAM for a new module.

Parameters:
size The size of the requested memory.

Returns:
A pointer to the allocated RAM

This function is called from the Contiki ELF loader to allocate RAM for the module to be loaded into.

6.22.2.2 void∗ elfloader_arch_allocate_rom (intsize)

Allocate program memory for a new module.

Parameters:
size The size of the requested memory.

Returns:
A pointer to the allocated program memory

This function is called from the Contiki ELF loader to allocate program memory (typically ROM) for the
module to be loaded into.

6.22.2.3 void elfloader_arch_relocate (intfd, unsigned intsectionoffset, struct elf32_rela∗ rela, char
∗ addr)

Perform a relocation.

Parameters:
fd The file descriptor for the ELF file.

sectionoffsetThe file offset at which the relocation can be found.

rela A pointer to an ELF32 rela structure (structelf32_rela).

addr The relocated address.

This function is called from the Contiki ELF loader to perform a relocation on a piece of code or data. The
relocated address is calculated by the Contiki ELF loader, based on information in the ELF file, and it is
the responsibility of this function to patch the executable code. The Contiki ELF loader passes a pointer
to an ELF32 rela structure (structelf32_rela) that contains information about how to patch the code. This
information is different from processor to processor.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.23 Protothreads 74

6.22.2.4 void elfloader_arch_write_text (intfd, unsigned intsize, char ∗ mem)

Write the program code (text segment) into program memory.

Parameters:
fd The file descriptor for the ELF file.

size The size of the text segment.

mem A pointer to the where the text segment should be flashed

This function is called from the Contiki ELF loader to write the program code (text segment) of a loaded
module into memory. The function is called when all relocations have been performed.

6.23 Protothreads

6.23.1 Detailed Description

Protothreads are a type of lightweight stackless threads designed for severly memory constrained systems
such as deeply embedded systems or sensor network nodes.

Protothreads provides linear code execution for event-driven systems implemented in C. Protothreads can
be used with or without an RTOS.

Protothreads are a extremely lightweight, stackless type of threads that provides a blocking context on top
of an event-driven system, without the overhead of per-thread stacks. The purpose of protothreads is to
implement sequential flow of control without complex state machines or full multi-threading. Protothreads
provides conditional blocking inside C functions.

The advantage of protothreads over a purely event-driven approach is that protothreads provides a sequen-
tial code structure that allows for blocking functions. In purely event-driven systems, blocking must be
implemented by manually breaking the function into two pieces - one for the piece of code before the
blocking call and one for the code after the blocking call. This makes it hard to use control structures such
as if() conditionals and while() loops.

The advantage of protothreads over ordinary threads is that a protothread do not require a separate stack.
In memory constrained systems, the overhead of allocating multiple stacks can consume large amounts of
the available memory. In contrast, each protothread only requires between two and twelve bytes of state,
depending on the architecture.

Note:
Because protothreads do not save the stack context across a blocking call,local variables are not
preserved when the protothread blocks. This means that local variables should be used with utmost
care -if in doubt, do not use local variables inside a protothread!

Main features:

• No machine specific code - the protothreads library is pure C

• Does not use error-prone functions such as longjmp()

• Very small RAM overhead - only two bytes per protothread

• Can be used with or without an OS

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.23 Protothreads 75

• Provides blocking wait without full multi-threading or stack-switching

Examples applications:

• Memory constrained systems

• Event-driven protocol stacks

• Deeply embedded systems

• Sensor network nodes

The protothreads API consists of four basic operations: initialization:PT_INIT(), execution:PT_BEGIN(),
conditional blocking:PT_WAIT_UNTIL() and exit:PT_END(). On top of these, two convenience func-
tions are built: reversed condition blocking:PT_WAIT_WHILE() and protothread blocking:PT_WAIT_-
THREAD().

See also:
Protothreads API documentation

The protothreads library is released under a BSD-style license that allows for both non-commercial and
commercial usage. The only requirement is that credit is given.

6.23.2 Authors

The protothreads library was written by Adam Dunkels<adam@sics.se > with support from Oliver
Schmidt<ol.sc@web.de >.

6.23.3 Protothreads

Protothreads are a extremely lightweight, stackless threads that provides a blocking context on top of an
event-driven system, without the overhead of per-thread stacks. The purpose of protothreads is to imple-
ment sequential flow of control without using complex state machines or full multi-threading. Protothreads
provides conditional blocking inside a C function.

In memory constrained systems, such as deeply embedded systems, traditional multi-threading may have a
too large memory overhead. In traditional multi-threading, each thread requires its own stack, that typically
is over-provisioned. The stacks may use large parts of the available memory.

The main advantage of protothreads over ordinary threads is that protothreads are very lightweight: a
protothread does not require its own stack. Rather, all protothreads run on the same stack and context
switching is done by stack rewinding. This is advantageous in memory constrained systems, where a stack
for a thread might use a large part of the available memory. A protothread only requires only two bytes
of memory per protothread. Moreover, protothreads are implemented in pure C and do not require any
machine-specific assembler code.

A protothread runs within a single C function and cannot span over other functions. A protothread may
call normal C functions, but cannot block inside a called function. Blocking inside nested function calls is
instead made by spawning a separate protothread for each potentially blocking function. The advantage of
this approach is that blocking is explicit: the programmer knows exactly which functions that block that
which functions the never blocks.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:ol.sc@web.de

6.23 Protothreads 76

Protothreads are similar to asymmetric co-routines. The main difference is that co-routines uses a separate
stack for each co-routine, whereas protothreads are stackless. The most similar mechanism to protothreads
are Python generators. These are also stackless constructs, but have a different purpose. Protothreads
provides blocking contexts inside a C function, whereas Python generators provide multiple exit points
from a generator function.

6.23.4 Local variables

Note:
Because protothreads do not save the stack context across a blocking call, local variables are not
preserved when the protothread blocks. This means that local variables should be used with utmost
care - if in doubt, do not use local variables inside a protothread!

6.23.5 Scheduling

A protothread is driven by repeated calls to the function in which the protothread is running. Each time the
function is called, the protothread will run until it blocks or exits. Thus the scheduling of protothreads is
done by the application that uses protothreads.

6.23.6 Implementation

Protothreads are implemented usinglocal continuations. A local continuation represents the current state
of execution at a particular place in the program, but does not provide any call history or local variables.
A local continuation can be set in a specific function to capture the state of the function. After a local
continuation has been set can be resumed in order to restore the state of the function at the point where the
local continuation was set.

Local continuations can be implemented in a variety of ways:

1. by using machine specific assembler code,

2. by using standard C constructs, or

3. by using compiler extensions.

The first way works by saving and restoring the processor state, except for stack pointers, and requires
between 16 and 32 bytes of memory per protothread. The exact amount of memory required depends on
the architecture.

The standard C implementation requires only two bytes of state per protothread and utilizes the C switch()
statement in a non-obvious way that is similar to Duff’s device. This implementation does, however,
impose a slight restriction to the code that uses protothreads in that the code cannot use switch() statements
itself.

Certain compilers has C extensions that can be used to implement protothreads. GCC supports label point-
ers that can be used for this purpose. With this implementation, protothreads require 4 bytes of RAM per
protothread.

Files

• file pt.h

Protothreads implementation.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.24 The Contiki file system interface 77

Modules

• Local continuations

Local continuations form the basis for implementing protothreads.

• Protothread semaphores

This module implements counting semaphores on top of protothreads.

Data Structures

• structpt

Defines

• #definePT_WAITING 0
• #definePT_EXITED1
• #definePT_ENDED2
• #definePT_YIELDED3

6.24 The Contiki file system interface

6.24.1 Detailed Description

The Contiki file system interface (CFS) defines an abstract API for reading directories and for reading and
writing files.

The CFS API is intentionally simple. The CFS API is modeled after the POSIX file API, and slightly
simplified.

Files

• file cfs.h

CFS header file.

Defines

• #defineCFS_READ0

Specify thatcfs_open()should open a file for reading.

• #defineCFS_WRITE1

Specify thatcfs_open()should open a file for writing.

• #definecfs_open(name, flags) (cfs_find_service()→ open(name, flags))
• #definecfs_close(fd) (cfs_find_service()→ close(fd))
• #definecfs_read(fd, buf, len) (cfs_find_service()→ read(fd, buf, len))
• #definecfs_write(fd, buf, len) (cfs_find_service()→ write(fd, buf, len))
• #definecfs_seek(fd, off) (cfs_find_service()→ seek(fd, off))

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.24 The Contiki file system interface 78

• #definecfs_opendir(dirp, name) (cfs_find_service()→ opendir(dirp, name))
• #definecfs_readdir(dirp, ent) (cfs_find_service()→ readdir(dirp, ent))
• #definecfs_closedir(dirp) (cfs_find_service()→ closedir(dirp))

Functions

• int cfs_open(const char∗name, int flags)

Open a file.

• void cfs_close(int fd)

Close an open file.

• int cfs_read(int fd, char∗buf, unsigned int len)

Read data from an open file.

• int cfs_write(int fd, char∗buf, unsigned int len)

Write data to an open file.

• int cfs_seek(int fd, unsigned int offset)

Seek to a specified position in an open file.

• int cfs_opendir(struct cfs_dir∗dirp, const char∗name)

Open a directory for reading directory entries.

• int cfs_readdir(struct cfs_dir∗dirp, struct cfs_dirent∗dirent)

Read a directory entry.

• int cfs_closedir(struct cfs_dir∗dirp)

Close a directory opened withcfs_opendir().

6.24.2 Define Documentation

6.24.2.1 #define CFS_READ 0

Specify thatcfs_open()should open a file for reading.

This constant indicates tocfs_open()that a file should be opened for reading. CFS_WRITE should be used
if the file is opened for writing, and CFS_READ + CFS_WRITE indicates that the file is opened for both
reading and writing.

See also:
cfs_open()

Definition at line 74 of file cfs.h.

6.24.2.2 #define CFS_WRITE 1

Specify thatcfs_open()should open a file for writing.

This constant indicates tocfs_open()that a file should be opened for writing. CFS_READ should be used
if the file is opened for reading, and CFS_READ + CFS_WRITE indicates that the file is opened for both
reading and writing.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.24 The Contiki file system interface 79

See also:
cfs_open()

Definition at line 86 of file cfs.h.

6.24.3 Function Documentation

6.24.3.1 void cfs_close (intfd)

Close an open file.

Parameters:
fd The file descriptor of the open file.

This function closes a file that has previously been opened withcfs_open().

6.24.3.2 int cfs_closedir (struct cfs_dir∗ dirp)

Close a directory opened withcfs_opendir().

Parameters:
dirp A pointer to a struct cfs_dir that has been opened withcfs_opendir().

See also:
cfs_opendir()
cfs_readdir()

6.24.3.3 int cfs_open (const char∗ name, int flags)

Open a file.

Parameters:
name The name of the file.

flags CFS_READ, or CFS_WRITE, or both.

Returns:
A file descriptor, if the file could be opened, or -1 if the file could not be opened.

This function opens a file and returns a file descriptor for the opened file. If the file could not be opened,
the function returns -1. The function can open a file for reading or writing, or both.

An opened file must be closed withcfs_close().

See also:
CFS_READ
CFS_WRITE
cfs_close()

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.24 The Contiki file system interface 80

6.24.3.4 int cfs_opendir (struct cfs_dir∗ dirp, const char∗ name)

Open a directory for reading directory entries.

Parameters:
dirp A pointer to a struct cfs_dir that is filled in by the function.

name The name of the directory.

Returns:
0 or -1 if the directory could not be opened.

See also:
cfs_readdir()
cfs_closedir()

6.24.3.5 int cfs_read (intfd, char ∗ buf, unsigned int len)

Read data from an open file.

Parameters:
fd The file descriptor of the open file.

buf The buffer in which data should be read from the file.

len The number of bytes that should be read.

Returns:
The number of bytes that was actually read from the file.

This function reads data from an open file into a buffer. The file must have first been opened withcfs_open()
and the CFS_READ flag.

6.24.3.6 int cfs_readdir (struct cfs_dir∗ dirp, struct cfs_dirent ∗ dirent)

Read a directory entry.

Parameters:
dirp A pointer to a struct cfs_dir that has been opened withcfs_opendir().

dirent A pointer to a struct cfs_dirent that is filled in bycfs_readdir()

Return values:
0 If a directory entry was read.

0 If no more directory entries can be read.

See also:
cfs_opendir()
cfs_closedir()

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 81

6.24.3.7 int cfs_seek (intfd, unsigned intoffset)

Seek to a specified position in an open file.

Parameters:
fd The file descriptor of the open file.

offset The position in the file.

Returns:
The new position in the file.

This function moves the file position to the specified position in the file. The next byte that is read from or
written to the file will be at the position given by the offset parameter.

6.24.3.8 int cfs_write (intfd, char ∗ buf, unsigned int len)

Write data to an open file.

Parameters:
fd The file descriptor of the open file.

buf The buffer from which data should be written to the file.

len The number of bytes that should be written.

Returns:
The number of bytes that was actually written to the file.

This function reads writes data from a memory buffer to an open file. The file must have been opened with
cfs_open()and the CFS_WRITE flag.

6.25 CTK application functions

6.25.1 Detailed Description

The CTK functions used by an application program.

Data Structures

• structctk_separator
• structctk_button
• structctk_label
• structctk_hyperlink
• structctk_textentry
• structctk_icon
• structctk_bitmap
• structctk_textmap
• structctk_widget_button
• structctk_widget_label
• structctk_widget_hyperlink
• structctk_widget_textentry
• structctk_widget_icon
• structctk_widget_bitmap

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 82

Defines

• #defineCTK_SEPARATOR(x, y, w) NULL, NULL, x, y, CTK_WIDGET_SEPARATOR, w, 1,
CTK_WIDGET_FLAG_INITIALIZER(0)

Instantiating macro for thectk_separatorwidget.

• #defineCTK_BUTTON(x, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1, CTK_-
WIDGET_FLAG_INITIALIZER(0) text

Instantiating macro for thectk_buttonwidget.

• #defineCTK_LABEL(x, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h, CTK_-
WIDGET_FLAG_INITIALIZER(0) text,

Instantiating macro for thectk_labelwidget.

• #defineCTK_HYPERLINK(x, y, w, text, url) NULL, NULL, x, y, CTK_WIDGET_HYPERLINK,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, url

Instantiating macro for thectk_hyperlinkwidget.

• #defineCTK_TEXTENTRY_NORMAL0
• #defineCTK_TEXTENTRY_EDIT1
• #defineCTK_TEXTENTRY_CLEAR(e)

Clears a text entry widget and sets the cursor to the start of the text line.

• #defineCTK_TEXTENTRY(x, y, w, h, text, len)

Instantiating macro for thectk_textentrywidget.

• #defineCTK_TEXTENTRY_INPUT(x, y, w, h, text, len, input)
• #defineCTK_ICON_BITMAP(bitmap) NULL
• #defineCTK_ICON_TEXTMAP(textmap) NULL
• #defineCTK_ICON(title, bitmap, textmap)

Instantiating macro for thectk_iconwidget.

• #defineCTK_BITMAP(x, y, w, h, bitmap, bitmap_width, bitmap_height)
• #defineCTK_TEXTMAP_NORMAL 0
• #defineCTK_TEXTMAP_ACTIVE 1
• #defineCTK_TEXTMAP(x, y, w, h, textmap) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h,

CTK_WIDGET_FLAG_INITIALIZER(0) text, CTK_TEXTMAP_NORMAL
• #defineCTK_ICON_ADD(icon, p) ctk_icon_add((structctk_widget∗)icon, p)

Add an icon to the desktop.

• #defineCTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (structctk_widget∗)widg)

Add a widget to a window.

• #defineCTK_WIDGET_FOCUS(win, widg) (win)→ focused = (structctk_widget∗)(widg)

Set focus to a widget.

• #defineCTK_WIDGET_REDRAW(widg) ctk_widget_redraw((structctk_widget∗)widg)

Add a widget to the redraw queue.

• #defineCTK_WIDGET_TYPE(w) ((w) → type)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 83

Obtain the type of a widget.

• #defineCTK_WIDGET_SET_WIDTH(widget, width)

Sets the width of a widget.

• #defineCTK_WIDGET_XPOS(w) (((structctk_widget∗)(w)) → x)

Retrieves the x position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_SET_XPOS(w, xpos) ((structctk_widget∗)(w)) → x = (xpos)

Sets the x position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_YPOS(w) (((structctk_widget∗)(w)) → y)

Retrieves the y position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_SET_YPOS(w, ypos) ((structctk_widget∗)(w)) → y = (ypos)

Sets the y position of a widget, relative to the window in which the widget is contained.

• #definectk_label_set_height(w, height) (w)→ widget.label.h = (height)

Set the height of a label.

• #definectk_label_set_text(l, t) (l) → text = (t)

Set the text of a label.

• #definectk_button_set_text(b, t) (b)→ text = (t)

Set the text of a button.

• #definectk_bitmap_set_bitmap(b, m) (b)→ bitmap = (m)
• #defineCTK_BUTTON_NEW(widg, xpos, ypos, width, buttontext)
• #defineCTK_LABEL_NEW(widg, xpos, ypos, width, height, labeltext)
• #defineCTK_BITMAP_NEW(widg, xpos, ypos, width, height, bmap)
• #defineCTK_TEXTENTRY_NEW(widg, xxpos, yypos, width, height, textptr, textlen)
• #defineCTK_TEXTENTRY_INPUT_NEW(widg, xxpos, yypos, width, height, textptr, textlen, iin-

put)
• #defineCTK_HYPERLINK_NEW(widg, xpos, ypos, width, linktext, linkurl)
• #defineUP0
• #defineDOWN 1
• #defineLEFT 2
• #defineRIGHT 3

Typedefs

• typedef unsigned char(∗ ctk_textentry_input)(ctk_arch_key_tc, structctk_textentry∗t)

Functions

• void ctk_widget_redraw(structctk_widget∗widget)

Redraws a widget.

• void ctk_desktop_redraw(structctk_desktop∗d)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 84

Redraw the entire desktop.

• unsigned charctk_desktop_width(structctk_desktop∗d)

Gets the width of the desktop.

• unsigned charctk_desktop_height(structctk_desktop∗d)

Gets the height of the desktop.

• void ctk_mode_set(unsigned char m)

Sets the current CTK mode.

• unsigned charctk_mode_get(void)

Retrieves the current CTK mode.

• void ctk_icon_add(CC_REGISTER_ARG structctk_widget∗icon, structprocess∗p)

Add an icon to the desktop.

• void ctk_dialog_open(structctk_window∗d)

Open a dialog box.

• void ctk_dialog_close(void)

Close the dialog box, if one is open.

• void ctk_window_open(CC_REGISTER_ARG structctk_window∗w)

Open a window, or bring window to front if already open.

• void ctk_window_close(structctk_window∗w)

Close a window if it is open.

• void ctk_window_clear(structctk_window∗w)

Remove all widgets from a window.

• void ctk_menu_add(structctk_menu∗menu)

Add a menu to the menu bar.

• void ctk_menu_remove(structctk_menu∗menu)

Remove a menu from the menu bar.

• void ctk_window_redraw(structctk_window∗w)

Redraw a window.

• void ctk_window_new(structctk_window∗window, unsigned char w, unsigned char h, char∗title)

Create a new window.

• void ctk_dialog_new(CC_REGISTER_ARG structctk_window∗dialog, unsigned char w, unsigned
char h)

Creates a new dialog.

• void ctk_menu_new(CC_REGISTER_ARG structctk_menu∗menu, char∗title)

Creates a new menu.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 85

• unsigned charctk_menuitem_add(CC_REGISTER_ARG structctk_menu∗menu, char∗name)

Adds a menu item to a menu.

• void CC_FASTCALLctk_widget_add(CC_REGISTER_ARG structctk_window∗window, CC_-
REGISTER_ARG structctk_widget∗widget)

Adds a widget to a window.

• PROCESS_THREAD(ctk_process, ev, data)

Variables

• process_event_tctk_signal_keypress

Emitted for every key being pressed.

• process_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

• process_event_tctk_signal_widget_select

Emitted when a widget is selected.

• process_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

• process_event_tctk_signal_window_close

Emitted when a window is closed.

• process_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

• process_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

• process_event_tctk_signal_button_activate

Same as ctk_signal_widget_activate.

• process_event_tctk_signal_button_hover

Same as ctk_signal_widget_select.

• process_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

• process_event_tctk_signal_hyperlink_hover

Same as ctk_signal_widget_select.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 86

6.25.2 Define Documentation

6.25.2.1 #define CTK_BUTTON(x, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1,
CTK_WIDGET_FLAG_INITIALIZER(0) text

Instantiating macro for thectk_buttonwidget.

This macro is used when instantiating actk_buttonwidget and is intended to be used together with a struct
assignment like this:

struct ctk_button but =
{CTK_BUTTON(0, 0, 2, "Ok")};

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

text The button text.

Definition at line 141 of file ctk.h.

6.25.2.2 #define ctk_button_set_text(b, t) (b)→ text = (t)

Set the text of a button.

Parameters:
b The CTK button widget.

t The new text of the button.

Definition at line 832 of file ctk.h.

6.25.2.3 #define CTK_HYPERLINK(x, y, w, text, url) NULL, NULL, x, y, CTK_WIDGET_-
HYPERLINK, w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, url

Instantiating macro for thectk_hyperlinkwidget.

This macro is used when instantiating actk_hyperlinkwidget and is intended to be used together with a
struct assignment like this:

struct ctk_hyperlink hlink =
{CTK_HYPERLINK(0, 0, 7, "Contiki", "http://dunkels.com/adam/contiki/")};

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

text The hyperlink text.

url The hyperlink URL.

Definition at line 203 of file ctk.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 87

6.25.2.4 #define CTK_ICON(title, bitmap, textmap)

Value:

NULL, NULL, 0, 0, CTK_WIDGET_ICON, 2, 4, CTK_WIDGET_FLAG_INITIALIZER(0) \
title, PROCESS_NONE, \
CTK_ICON_BITMAP(bitmap), CTK_ICON_TEXTMAP(textmap)

Instantiating macro for thectk_iconwidget.

This macro is used when instantiating actk_iconwidget and is intended to be used together with a struct
assignment like this:

struct ctk_icon icon =
{CTK_ICON("An icon", bitmapptr, textmapptr)};

Parameters:
title The icon’s text.

bitmap A pointer to the icon’s bitmap image.

textmap A pointer to the icon’s text version of the bitmap.

Definition at line 313 of file ctk.h.

6.25.2.5 #define CTK_ICON_ADD(icon, p) ctk_icon_add((structctk_widget ∗)icon, p)

Add an icon to the desktop.

Parameters:
icon The icon to be added.

p The process ID of the process that owns the icon.

Definition at line 716 of file ctk.h.

Referenced by program_handler_add().

6.25.2.6 #define CTK_LABEL(x, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h,
CTK_WIDGET_FLAG_INITIALIZER(0) text,

Instantiating macro for thectk_labelwidget.

This macro is used when instantiating actk_labelwidget and is intended to be used together with a struct
assignment like this:

struct ctk_label lab =
{CTK_LABEL(0, 0, 5, 1, "Label")};

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

h The height of the label.

text The label text.

Definition at line 172 of file ctk.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 88

6.25.2.7 #define ctk_label_set_height(w, height) (w)→ widget.label.h = (height)

Set the height of a label.

Parameters:
w The CTK label widget.

height The new height of the label.

Definition at line 815 of file ctk.h.

6.25.2.8 #define ctk_label_set_text(l, t) (l)→ text = (t)

Set the text of a label.

Parameters:
l The CTK label widget.

t The new text of the label.

Definition at line 824 of file ctk.h.

Referenced by PROCESS_THREAD(), and program_handler_load().

6.25.2.9 #define CTK_SEPARATOR(x, y, w) NULL, NULL, x, y, CTK_WIDGET_SEPARATOR,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(0)

Instantiating macro for thectk_separatorwidget.

This macro is used when instantiating actk_separatorwidget and is intended to be used together with a
struct assignment like this:

struct ctk_separator sep =
{CTK_SEPARATOR(0, 0, 23)};

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

Definition at line 112 of file ctk.h.

6.25.2.10 #define CTK_TEXTENTRY(x, y, w, h, text, len)

Value:

NULL, NULL, x, y, CTK_WIDGET_TEXTENTRY, w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, len, \
CTK_TEXTENTRY_NORMAL, 0, 0, NULL

Instantiating macro for thectk_textentrywidget.

This macro is used when instantiating actk_textentrywidget and is intended to be used together with a
struct assignment like this:

struct ctk_textentry tentry =
{CTK_TEXTENTRY(0, 0, 30, 1, textbuffer, 50)};

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 89

Note:
The height of the text entry widget is obsolete and not intended to be used.

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

h The text entry height (obsolete).

text A pointer to the buffer that should be edited.

len The length of the text buffer

Definition at line 265 of file ctk.h.

6.25.2.11 #define CTK_TEXTENTRY_CLEAR(e)

Value:

do { memset((e)->text, 0, (e)->h * ((e)->len + 1)); \
(e)->xpos = 0; (e)->ypos = 0; } while(0)

Clears a text entry widget and sets the cursor to the start of the text line.

Parameters:
e The text entry widget to be cleared.

Definition at line 230 of file ctk.h.

6.25.2.12 #define CTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (struct ctk_widget
∗)widg)

Add a widget to a window.

Parameters:
win The window to which the widget should be added.

widg The widget to be added.

Definition at line 727 of file ctk.h.

Referenced by ctk_textedit_add().

6.25.2.13 #define CTK_WIDGET_FOCUS(win, widg) (win)→ focused = (struct ctk_widget
∗)(widg)

Set focus to a widget.

Parameters:
win The widget’s window.

widg The widget

Definition at line 738 of file ctk.h.

Referenced by ctk_textedit_eventhandler(), and PROCESS_THREAD().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 90

6.25.2.14 #define CTK_WIDGET_REDRAW(widg) ctk_widget_redraw((structctk_widget∗)widg)

Add a widget to the redraw queue.

Parameters:
widg The widget to be redrawn.

Definition at line 746 of file ctk.h.

Referenced by ctk_textedit_eventhandler().

6.25.2.15 #define CTK_WIDGET_SET_WIDTH(widget, width)

Value:

do { \
((struct ctk_widget *)(widget))->w = (width); } while(0)

Sets the width of a widget.

Parameters:
widget The widget.

width The width of the widget, in characters.

Definition at line 764 of file ctk.h.

6.25.2.16 #define CTK_WIDGET_SET_XPOS(w, xpos) ((structctk_widget ∗)(w)) → x = (xpos)

Sets the x position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

xpos The x position of the widget.

Definition at line 783 of file ctk.h.

6.25.2.17 #define CTK_WIDGET_SET_YPOS(w, ypos) ((structctk_widget ∗)(w)) → y = (ypos)

Sets the y position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

ypos The y position of the widget.

Definition at line 801 of file ctk.h.

6.25.2.18 #define CTK_WIDGET_TYPE(w) ((w)→ type)

Obtain the type of a widget.

Parameters:
w The widget.

Definition at line 755 of file ctk.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 91

6.25.2.19 #define CTK_WIDGET_XPOS(w) (((structctk_widget ∗)(w)) → x)

Retrieves the x position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

Returns:
The x position of the widget.

Definition at line 774 of file ctk.h.

6.25.2.20 #define CTK_WIDGET_YPOS(w) (((structctk_widget ∗)(w)) → y)

Retrieves the y position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

Returns:
The y position of the widget.

Definition at line 792 of file ctk.h.

6.25.3 Function Documentation

6.25.3.1 unsigned char ctk_desktop_height (structctk_desktop∗ d)

Gets the height of the desktop.

Parameters:
d The desktop.

Returns:
The height of the desktop, in characters.

Note:
The d parameter is currently unused and must be set to NULL.

Definition at line 939 of file ctk.c.

6.25.3.2 void ctk_desktop_redraw (structctk_desktop∗ d)

Redraw the entire desktop.

Parameters:
d The desktop to be redrawn.

Note:
Currently the parameter d is not used, but must be set to NULL.

Definition at line 602 of file ctk.c.

References CTK_MODE_NORMAL, CTK_MODE_WINDOWMOVE, PROCESS_CURRENT, and
REDRAW_ALL.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 92

6.25.3.3 unsigned char ctk_desktop_width (structctk_desktop∗ d)

Gets the width of the desktop.

Parameters:
d The desktop.

Returns:
The width of the desktop, in characters.

Note:
The d parameter is currently unused and must be set to NULL.

Definition at line 924 of file ctk.c.

6.25.3.4 void ctk_dialog_new (CC_REGISTER_ARG structctk_window ∗ dialog, unsigned char
w, unsigned charh)

Creates a new dialog.

This function only sets up the internal structure of thectk_windowstruct but does not open the dialog. The
dialog must be explicitly opened by calling thectk_dialog_open()function.

Parameters:
dialog The dialog to be created.

w The width of the dialog.

h The height of the dialog.

Definition at line 729 of file ctk.c.

References NULL.

6.25.3.5 void ctk_dialog_open (structctk_window ∗ d)

Open a dialog box.

Parameters:
d The dialog to be opened.

Definition at line 313 of file ctk.c.

References REDRAW_FOCUS.

Referenced by PROCESS_THREAD(), and program_handler_load().

6.25.3.6 void ctk_icon_add (CC_REGISTER_ARG structctk_widget ∗ icon, struct process∗ p)

Add an icon to the desktop.

Parameters:
icon The icon to be added.

p The process that owns the icon.

Definition at line 288 of file ctk.c.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 93

6.25.3.7 void ctk_menu_add (structctk_menu∗ menu)

Add a menu to the menu bar.

Parameters:
menu The menu to be added.

Note:
Do not call this function multiple times for the same menu, as no check is made to see if the menu
already is in the menu bar.

Definition at line 488 of file ctk.c.

References ctk_menus::menus, ctk_menu::next, NULL, and REDRAW_MENUPART.

Referenced by PROCESS_THREAD().

6.25.3.8 void ctk_menu_new (CC_REGISTER_ARG structctk_menu∗ menu, char ∗ title)

Creates a new menu.

This function sets up the internal structure of the menu, but does not add it to the menubar. Use the function
ctk_menu_add()for that purpose.

Parameters:
menu The menu to be created.

title The title of the menu.

Definition at line 747 of file ctk.c.

References NULL.

6.25.3.9 void ctk_menu_remove (structctk_menu∗ menu)

Remove a menu from the menu bar.

Parameters:
menu The menu to be removed.

Definition at line 516 of file ctk.c.

References ctk_menus::menus, ctk_menu::next, NULL, and REDRAW_MENUPART.

6.25.3.10 unsigned char ctk_menuitem_add (CC_REGISTER_ARG structctk_menu∗ menu, char
∗ name)

Adds a menu item to a menu.

In CTK, each menu item is identified by a number which is unique within each menu. When a menu item
is selected, a ctk_menuitem_activated signal is emitted and the menu item number is passed as signal data
with the signal.

Parameters:
menu The menu to which the menu item should be added.

name The name of the menu item.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 94

Returns:
The number of the menu item.

Definition at line 773 of file ctk.c.

6.25.3.11 unsigned char ctk_mode_get (void)

Retrieves the current CTK mode.

Returns:
The current CTK mode.

Definition at line 275 of file ctk.c.

6.25.3.12 void ctk_mode_set (unsigned charm)

Sets the current CTK mode.

The CTK mode can be either CTK_MODE_NORMAL, CTK_MODE_SCREENSAVER or CTK_-
MODE_EXTERNAL. CTK_MODE_NORMAL is the normal mode, in which keypresses and mouse
pointer movements are processed and the screen is redrawn. In CTK_MODE_SCREENSAVER, no screen
redraws are performed and the first key press or pointer movement will cause the ctk_signal_screensaver_-
stop to be emitted. In the CTK_MODE_EXTERNAL mode, key presses and pointer movements are ig-
nored and no screen redraws are made.

Parameters:
m The mode.

Definition at line 264 of file ctk.c.

6.25.3.13 void CC_FASTCALL ctk_widget_add (CC_REGISTER_ARG structctk_window ∗ win-
dow, CC_REGISTER_ARG struct ctk_widget ∗ widget)

Adds a widget to a window.

This function adds a widget to a window. The order of which the widgets are added is important, as it sets
the order to which widgets are cycled with the widget selection keys.

Parameters:
window The window to which the widhet should be added.

widget The widget to be added.

Definition at line 896 of file ctk.c.

References CTK_WIDGET_LABEL, and CTK_WIDGET_SEPARATOR.

6.25.3.14 void ctk_widget_redraw (structctk_widget ∗ widget)

Redraws a widget.

This function will set a flag which causes the widget to be redrawn next time the CTK process is scheduled.

Parameters:
widget The widget that is to be redrawn.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 95

Note:
This function should usually not be called directly since it requires typecasting of the widget param-
eter. The wrapper macroCTK_WIDGET_REDRAW()does the required typecast and should be used
instead.

Definition at line 873 of file ctk.c.

References CTK_MODE_NORMAL, and NULL.

6.25.3.15 void ctk_window_clear (structctk_window ∗ w)

Remove all widgets from a window.

Parameters:
w The window to be cleared.

Definition at line 471 of file ctk.c.

References ctk_window::active, ctk_window::focused, ctk_window::inactive, and NULL.

6.25.3.16 void ctk_window_close (structctk_window ∗ w)

Close a window if it is open.

If the window is not open, this function does nothing.

Parameters:
w The window to be closed.

Definition at line 387 of file ctk.c.

References ctk_window::next, NULL, ctk_window::prev, and REDRAW_ALL.

Referenced by PROCESS_THREAD().

6.25.3.17 void ctk_window_new (structctk_window ∗ window, unsigned charw, unsigned charh,
char ∗ title)

Create a new window.

Creates a new window. The memory for the window structure must already be allocated by the caller, and
is usually done with a static declaration.

This function sets up the internal structure of thectk_windowstruct and creates the move and close buttons,
but it does not open the window. The window must be explicitly opened by calling the ctk_window_open()
function.

Parameters:
window The window to be created.

w The width of the new window.

h The height of the new window.

title The title of the new window.

Definition at line 707 of file ctk.c.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.25 CTK application functions 96

6.25.3.18 void ctk_window_open (CC_REGISTER_ARG structctk_window ∗ w)

Open a window, or bring window to front if already open.

Parameters:
w The window to be opened.

Definition at line 338 of file ctk.c.

References ctk_window::next, NULL, ctk_window::prev, and REDRAW_ALL.

6.25.3.19 void ctk_window_redraw (structctk_window ∗ w)

Redraw a window.

This function redraws the window, but only if it is the foremost one on the desktop.

Parameters:
w The window to be redrawn.

Definition at line 628 of file ctk.c.

References ctk_draw_dialog(), ctk_draw_window(), CTK_FOCUS_WINDOW, CTK_MODE_NORMAL,
NULL, and ctk_menus::open.

Referenced by PROCESS_THREAD().

6.25.4 Variable Documentation

6.25.4.1 process_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

The signal is broadcast to all listeners.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.25.4.2 process_event_tctk_signal_keypress

Emitted for every key being pressed.

The key is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by ctk_textedit_eventhandler(), and PROCESS_THREAD().

6.25.4.3 process_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

The number of the menu item is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface 97

6.25.4.4 process_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

The button is passed as signal data to the listening process.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.25.4.5 process_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

A NULL pointer is passed as signal data and it is up to the listening process to check the position of the
mouse using the CTK mouse API.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.25.4.6 process_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

A pointer to the widget is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by ctk_textedit_eventhandler(), and PROCESS_THREAD().

6.25.4.7 process_event_tctk_signal_widget_select

Emitted when a widget is selected.

A pointer to the widget is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.25.4.8 process_event_tctk_signal_window_close

Emitted when a window is closed.

A pointer to the window is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.26 CTK graphical user interface

6.26.1 Detailed Description

The Contiki Toolkit (CTK) provides the graphical user interface for the Contiki system.

Files

• file ctk.h

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface 98

CTK header file.

• file ctk.c

The Contiki Toolkit CTK, the Contiki GUI.

• file ctk-draw.h

CTK screen drawing module interface, ctk-draw.

Modules

• CTK application functions

The CTK functions used by an application program.

• CTK events
• CTK device driver functions

The CTK device driver functions are divided into two modules, the ctk-draw module and the ctk-arch module.

Defines

• #defineCTK_WIDGET_FLAG_INITIALIZER(x)
• #defineCTK_MODE_NORMAL0
• #defineCTK_MODE_WINDOWMOVE1
• #defineCTK_MODE_SCREENSAVER2
• #defineCTK_MODE_EXTERNAL3
• #definectk_window_move(w, xpos, ypos) do { (w)→ x=xpos; (w)→ y=ypos; } while(0)
• #definectk_window_isopen(w) ((w) → next != NULL)
• #defineNULL (void ∗)0
• #defineREDRAW_NONE0
• #defineREDRAW_ALL 1
• #defineREDRAW_FOCUS2
• #defineREDRAW_WIDGETS4
• #defineREDRAW_MENUS8
• #defineREDRAW_MENUPART16
• #defineMAX_REDRAWWIDGETS4
• #defineICONX_START(width - 6)
• #defineICONY_START(height - 7)
• #defineICONX_DELTA -16
• #defineICONY_DELTA -5
• #defineICONY_MAX height
• #defineICONY_MIN 0

Functions

• void ctk_restore(void)
• void ctk_mode_set(unsigned char mode)

Sets the current CTK mode.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface 99

• unsigned charctk_mode_get(void)

Retrieves the current CTK mode.

• void ctk_window_new(structctk_window∗window, unsigned char w, unsigned char h, char∗title)

Create a new window.

• void ctk_window_clear(structctk_window∗w)

Remove all widgets from a window.

• void ctk_window_close(structctk_window∗w)

Close a window if it is open.

• void ctk_window_redraw(structctk_window∗w)

Redraw a window.

• void ctk_dialog_open(structctk_window∗d)

Open a dialog box.

• void ctk_dialog_close(void)

Close the dialog box, if one is open.

• void ctk_menu_add(structctk_menu∗menu)

Add a menu to the menu bar.

• void ctk_menu_remove(structctk_menu∗menu)

Remove a menu from the menu bar.

Variables

• unsigned shortctk_screensaver_timeout= (5∗60)

6.26.2 Function Documentation

6.26.2.1 void ctk_dialog_open (structctk_window ∗ d)

Open a dialog box.

Parameters:
d The dialog to be opened.

Definition at line 313 of file ctk.c.

References REDRAW_FOCUS.

Referenced by PROCESS_THREAD(), and program_handler_load().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface 100

6.26.2.2 void ctk_menu_add (structctk_menu∗ menu)

Add a menu to the menu bar.

Parameters:
menu The menu to be added.

Note:
Do not call this function multiple times for the same menu, as no check is made to see if the menu
already is in the menu bar.

Definition at line 488 of file ctk.c.

References ctk_menus::menus, ctk_menu::next, NULL, and REDRAW_MENUPART.

Referenced by PROCESS_THREAD().

6.26.2.3 void ctk_menu_remove (structctk_menu∗ menu)

Remove a menu from the menu bar.

Parameters:
menu The menu to be removed.

Definition at line 516 of file ctk.c.

References ctk_menus::menus, ctk_menu::next, NULL, and REDRAW_MENUPART.

6.26.2.4 unsigned char ctk_mode_get (void)

Retrieves the current CTK mode.

Returns:
The current CTK mode.

Definition at line 275 of file ctk.c.

6.26.2.5 void ctk_mode_set (unsigned charm)

Sets the current CTK mode.

The CTK mode can be either CTK_MODE_NORMAL, CTK_MODE_SCREENSAVER or CTK_-
MODE_EXTERNAL. CTK_MODE_NORMAL is the normal mode, in which keypresses and mouse
pointer movements are processed and the screen is redrawn. In CTK_MODE_SCREENSAVER, no screen
redraws are performed and the first key press or pointer movement will cause the ctk_signal_screensaver_-
stop to be emitted. In the CTK_MODE_EXTERNAL mode, key presses and pointer movements are ig-
nored and no screen redraws are made.

Parameters:
m The mode.

Definition at line 264 of file ctk.c.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface 101

6.26.2.6 void ctk_window_clear (structctk_window ∗ w)

Remove all widgets from a window.

Parameters:
w The window to be cleared.

Definition at line 471 of file ctk.c.

References ctk_window::active, ctk_window::focused, ctk_window::inactive, and NULL.

6.26.2.7 void ctk_window_close (structctk_window ∗ w)

Close a window if it is open.

If the window is not open, this function does nothing.

Parameters:
w The window to be closed.

Definition at line 387 of file ctk.c.

References ctk_window::next, NULL, ctk_window::prev, and REDRAW_ALL.

Referenced by PROCESS_THREAD().

6.26.2.8 void ctk_window_new (structctk_window ∗ window, unsigned charw, unsigned charh,
char ∗ title)

Create a new window.

Creates a new window. The memory for the window structure must already be allocated by the caller, and
is usually done with a static declaration.

This function sets up the internal structure of thectk_windowstruct and creates the move and close buttons,
but it does not open the window. The window must be explicitly opened by calling the ctk_window_open()
function.

Parameters:
window The window to be created.

w The width of the new window.

h The height of the new window.

title The title of the new window.

Definition at line 707 of file ctk.c.

6.26.2.9 void ctk_window_redraw (structctk_window ∗ w)

Redraw a window.

This function redraws the window, but only if it is the foremost one on the desktop.

Parameters:
w The window to be redrawn.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.27 CTK events 102

Definition at line 628 of file ctk.c.

References ctk_draw_dialog(), ctk_draw_window(), CTK_FOCUS_WINDOW, CTK_MODE_NORMAL,
NULL, and ctk_menus::open.

Referenced by PROCESS_THREAD().

6.27 CTK events

Variables

• process_event_tctk_signal_keypress

Emitted for every key being pressed.

• process_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

• process_event_tctk_signal_button_activate

Same as ctk_signal_widget_activate.

• process_event_tctk_signal_widget_select

Emitted when a widget is selected.

• process_event_tctk_signal_button_hover

Same as ctk_signal_widget_select.

• process_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

• process_event_tctk_signal_hyperlink_hover

Same as ctk_signal_widget_select.

• process_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

• process_event_tctk_signal_window_close

Emitted when a window is closed.

• process_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

• process_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

6.27.1 Variable Documentation

6.27.1.1 process_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

The signal is broadcast to all listeners.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.27 CTK events 103

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.27.1.2 process_event_tctk_signal_keypress

Emitted for every key being pressed.

The key is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by ctk_textedit_eventhandler(), and PROCESS_THREAD().

6.27.1.3 process_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

The number of the menu item is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.27.1.4 process_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

The button is passed as signal data to the listening process.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.27.1.5 process_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

A NULL pointer is passed as signal data and it is up to the listening process to check the position of the
mouse using the CTK mouse API.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.27.1.6 process_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

A pointer to the widget is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by ctk_textedit_eventhandler(), and PROCESS_THREAD().

6.27.1.7 process_event_tctk_signal_widget_select

Emitted when a widget is selected.

A pointer to the widget is passed as signal data.

Definition at line 115 of file ctk.c.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 104

Referenced by PROCESS_THREAD().

6.27.1.8 process_event_tctk_signal_window_close

Emitted when a window is closed.

A pointer to the window is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by PROCESS_THREAD().

6.28 CTK device driver functions

6.28.1 Detailed Description

The CTK device driver functions are divided into two modules, the ctk-draw module and the ctk-arch
module.

The purpose of the ctk-arch and the ctk-draw modules is to act as an interface between the CTK and the
actual hardware of the system on which Contiki is run. The ctk-arch takes care of the keyboard input from
the user, and the ctk-draw is responsible for drawing the CTK desktop, windows and user interface widgets
onto the actual screen.

More information about the ctk-draw and the ctk-arch modules can be found in the sectionsThe ctk-draw
moduleandThe ctk-arch module.

Data Structures

• structctk_widget

The generic CTK widget structure that contains all other widget structures.

• structctk_window

Representation of a CTK window.

• structctk_menuitem

Representation of an individual menu item.

• structctk_menu

Representation of an individual menu.

• structctk_menus

Representation of the menu bar.

Defines

• #defineCTK_WIDGET_SEPARATOR1

Widget number: The CTK separator widget.

• #defineCTK_WIDGET_LABEL 2

Widget number: The CTK label widget.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 105

• #defineCTK_WIDGET_BUTTON3

Widget number: The CTK button widget.

• #defineCTK_WIDGET_HYPERLINK4

Widget number: The CTK hyperlink widget.

• #defineCTK_WIDGET_TEXTENTRY5

Widget number: The CTK textentry widget.

• #defineCTK_WIDGET_BITMAP6

Widget number: The CTK bitmap widget.

• #defineCTK_WIDGET_ICON7

Widget number: The CTK icon widget.

• #defineCTK_WIDGET_FLAG_NONE0
• #defineCTK_WIDGET_FLAG_MONOSPACE1
• #defineCTK_WIDGET_FLAG_CENTER2
• #defineCTK_WIDGET_SET_FLAG(w, f)
• #defineCTK_MAXMENUITEMS 8
• #defineCTK_FOCUS_NONE0

Widget focus flag: no focus.

• #defineCTK_FOCUS_WIDGET1

Widget focus flag: widget has focus.

• #defineCTK_FOCUS_WINDOW2

Widget focus flag: widget’s window is the foremost one.

• #defineCTK_FOCUS_DIALOG4

Widget focus flag: widget is in a dialog.

Typedefs

• typedef charctk_arch_key_t

The keyboard character type of the system.

Functions

• void ctk_draw_init(void)

The initialization function.

• void ctk_draw_clear(unsigned char clipy1, unsigned char clipy2)

Clear the screen between the clip bounds.

• void ctk_draw_clear_window(struct ctk_window ∗window, unsigned char focus, unsigned char
clipy1, unsigned char clipy2)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 106

Draw the window background.

• void ctk_draw_window(struct ctk_window∗window, unsigned char focus, unsigned char clipy1,
unsigned char clipy2, unsigned char draw_borders)

Draw a window onto the screen.

• void ctk_draw_dialog(structctk_window∗dialog)

Draw a dialog onto the screen.

• void ctk_draw_widget(structctk_widget∗w, unsigned char focus, unsigned char clipy1, unsigned
char clipy2)

Draw a widget on a window.

6.28.1.1 The ctk-draw module In order to work efficiently even on limited systems, CTK uses a simple
coordinate system, where the screen is addressed using character coordinates instead of pixel coordinates.

This makes it trivial to implement the coordinate system on a text-based screen, and significantly reduces
complexity for pixel based screen systems.

The top left of the screen is (0,0) with x and y coordinates growing downwards and to the right.

It is the responsibility of the ctk-draw module to keep track of the screen size and must implement the two
functions ctk_draw_width() and ctk_draw_height(), which are used by the CTK for querying the screen
size. The functions must return the width and the height of the ctk-draw screen in character coordinates.

The ctk-draw module is responsible for drawing CTK windows onto the screen through the functionctk_-
draw_window().. A pseudo-code implementation of this function might look like this:

ctk_draw_window(window, focus, clipy1, clipy2, draw_borders) {
if(draw_borders) {

draw_window_borders(window, focus, clipy1, clipy2);
}
foreach(widget, window->inactive) {

ctk_draw_widget(widget, focus, clipy1, clipy2);
}
foreach(widget, window->active) {

if(widget == window->focused) {
ctk_draw_widget(widget, focus | CTK_FOCUS_WIDGET,

clipy1, clipy2);
} else {

ctk_draw_widget(widget, focus, clipy1, clipy2);
}

}
}

Where draw_window_borders() draws the window borders (also between clipy1 and clipy2). Thectk_-
draw_widget()function is explained below. Notice how the clipy1 and clipy2 parameters are passed to all
other functions; every function needs to know the boundaries within which they are allowed to draw.

In order to aid in implementing a ctk-draw module, a text-based ctk-draw called ctk-conio has already been
implemented. It conforms to the Borland conio C library, and a skeleton implementation of said library
exists in lib/libconio.c. If a more machine specific ctk-draw module is to be implemented, the instructions
in this file should be followed.

6.28.1.2 The ctk-arch module The ctk-arch module deals with keyboard input from the underlying
target system on which Contiki is running.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 107

The ctk-arch manages a keyboard input queue that is queried using the two functions ctk_arch_keyavail()
and ctk_arch_getkey().

6.28.2 Typedef Documentation

6.28.2.1 typedef charctk_arch_key_t

The keyboard character type of the system.

The ctk_arch_key_t is usually typedef’d to the char type, but some systems (such as VNC) have a 16-bit
key type.

Definition at line 237 of file ctk.h.

6.28.3 Function Documentation

6.28.3.1 void ctk_draw_clear (unsigned charclipy1, unsigned charclipy2)

Clear the screen between the clip bounds.

This function should clear the screen between the y coordinates "clipy1" and "clipy2", including the line at
y coordinate "clipy1", but not the line at y coordinate "clipy2".

Note:
This function may be used to draw a background image (wallpaper) on the desktop; it does not neces-
sarily "clear" the screen.

Parameters:
clipy1 The lower y coordinate of the clip region.

clipy2 The upper y coordinate of the clip region.

6.28.3.2 void ctk_draw_clear_window (structctk_window ∗window, unsigned charfocus, unsigned
char clipy1, unsigned charclipy2)

Draw the window background.

This function will be called by the CTK before a window will be completely redrawn.The function is
supposed to draw the window background, excluding window borders as these should be drawn by the
function that actually draws the window, between "clipy1" and "clipy2".

Note:
This function does not necessarily have to clear the window - it can be used for drawing a background
pattern in the window as well.

Parameters:
window The window for which the background should be drawn.

focus The focus of the window, either CTK_FOCUS_NONE for a background window, or CTK_-
FOCUS_WINDOW for the foreground window.

clipy1 The lower y coordinate of the clip region.

clipy2 The upper y coordinate of the clip region.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 108

6.28.3.3 void ctk_draw_dialog (structctk_window ∗ dialog)

Draw a dialog onto the screen.

In CTK, a dialog is similar to a window, with the only exception being that they are drawn in a different
style. Also, since dialogs always are drawn on top of everything else, they do not need to be drawn within
any special boundaries.

Note:
This function can usually be implemented so that it uses the same widget drawing code as thectk_-
draw_window()function.

Parameters:
dialog The dialog that is to be drawn.

Referenced by ctk_window_redraw().

6.28.3.4 void ctk_draw_init (void)

The initialization function.

This function is supposed to get the screen ready for drawing, and may be called at more than one time
during the operation of the system.

Referenced by ctk_restore(), and PROCESS_THREAD().

6.28.3.5 void ctk_draw_widget (structctk_widget ∗ w, unsigned charfocus, unsigned charclipy1,
unsigned charclipy2)

Draw a widget on a window.

This function is used for drawing a CTK widgets onto the screem is likely to be the most complex function
in the ctk-draw module. Still, it is straightforward to implement as it can be written in an incremental
fashion, starting with a single widget type and adding more widget types, one at a time.

The ctk-draw module may exploit how the CTK focus constants are defined in order to use a look-up table
for the colors. The CTK focus constants are defined in the file ctk/ctk.h as follows:

#define CTK_FOCUS_NONE 0
#define CTK_FOCUS_WIDGET 1
#define CTK_FOCUS_WINDOW 2
#define CTK_FOCUS_DIALOG 4

This gives the following table:

0: CTK_FOCUS_NONE (Background window, non-focused widget)
1: CTK_FOCUS_WIDGET (Background window, focused widget)
2: CTK_FOCUS_WINDOW (Foreground window, non-focused widget)
3: CTK_FOCUS_WINDOW | CTK_FOCUS_WIDGET

(Foreground window, focused widget)
4: CTK_FOCUS_DIALOG (Dialog, non-focused widget)
5: CTK_FOCUS_DIALOG | CTK_FOCUS_WIDGET

(Dialog, focused widget)

Parameters:
w The widget to be drawn.

focus The focus of the widget.

clipy1 The lower y coordinate of the clip region.

clipy2 The upper y coordinate of the clip region.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.29 Timer library 109

6.28.3.6 void ctk_draw_window (structctk_window ∗ window, unsigned charfocus, unsigned char
clipy1, unsigned charclipy2, unsigned chardraw_borders)

Draw a window onto the screen.

This function is called by the CTK when a window should be drawn on the screen. The ctk-draw layer is
free to choose how the window will appear on screen; with or without window borders and the style of the
borders, with or without transparent window background and how the background shall look, etc.

Parameters:
window The window which is to be drawn.

focus Specifies if the window should be drawn in foreground or background colors and can be either
CTK_FOCUS_NONE or CTK_FOCUS_WINDOW. Windows with a focus of CTK_FOCUS_-
WINDOW is usually drawn in a brighter color than those with CTK_FOCUS_NONE.

clipy1 Specifies the first lines on screen that actually should be drawn, in screen coordinates (line 1 is
the first line below the menus).

clipy2 Specifies the last + 1 line on screen that should be drawn, in screen coordinates (line 1 is the
first line below the menus)

Referenced by ctk_window_redraw().

6.29 Timer library

6.29.1 Detailed Description

The Contiki kernel does not provide support for timed events.

Rather, an application that wants to use timers needs to explicitly use the timer library.

The timer library provides functions for setting, resetting and restarting timers, and for checking if a timer
has expired. An application must "manually" check if its timers have expired; this is not done automatically.

A timer is declared as astruct timer and all access to the timer is made by a pointer to the declared
timer.

Note:
The timer library is not able to post events when a timer expires. TheEvent timersshould be used for
this purpose.
The timer library uses theClock library to measure time. Intervals should be specified in the format
used by the clock library.

See also:
Event timers

Files

• file timer.h

Timer library header file.

• file timer.c

Timer library implementation.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.29 Timer library 110

Data Structures

• structtimer

A timer.

Functions

• void timer_set(structtimer∗t, clock_time_t interval)

Set a timer.

• void timer_reset(structtimer∗t)
Reset the timer with the same interval.

• void timer_restart(structtimer∗t)
Restart the timer from the current point in time.

• int timer_expired(structtimer∗t)
Check if a timer has expired.

6.29.2 Function Documentation

6.29.2.1 int timer_expired (structtimer ∗ t)

Check if a timer has expired.

This function tests if a timer has expired and returns true or false depending on its status.

Parameters:
t A pointer to the timer

Returns:
Non-zero if the timer has expired, zero otherwise.

Definition at line 122 of file timer.c.

References clock_time(), interval, and start.

Referenced by PROCESS_THREAD(), and PT_THREAD().

6.29.2.2 void timer_reset (structtimer ∗ t)

Reset the timer with the same interval.

This function resets the timer with the same interval that was given to thetimer_set()function. The start
point of the interval is the exact time that the timer last expired. Therefore, this function will cause the
timer to be stable over time, unlike the timer_rester() function.

Parameters:
t A pointer to the timer.

See also:
timer_restart()

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.30 uIP configuration functions 111

Definition at line 85 of file timer.c.

References interval, and start.

Referenced by etimer_reset(), and PROCESS_THREAD().

6.29.2.3 void timer_restart (structtimer ∗ t)

Restart the timer from the current point in time.

This function restarts a timer with the same interval that was given to thetimer_set()function. The timer
will start at the current time.

Note:
A periodic timer will drift if this function is used to reset it. For preioric timers, use thetimer_reset()
function instead.

Parameters:
t A pointer to the timer.

See also:
timer_reset()

Definition at line 105 of file timer.c.

References clock_time(), and start.

Referenced by etimer_restart(), and PT_THREAD().

6.29.2.4 void timer_set (structtimer ∗ t, clock_time_t interval)

Set a timer.

This function is used to set a timer for a time sometime in the future. The functiontimer_expired()will
evaluate to true after the timer has expired.

Parameters:
t A pointer to the timer

interval The interval before the timer expires.

Definition at line 65 of file timer.c.

References clock_time(), interval, and start.

Referenced by etimer_set(), PROCESS_THREAD(), and tr1001_init().

6.30 uIP configuration functions

6.30.1 Detailed Description

The uIP configuration functions are used for setting run-time parameters in uIP such as IP addresses.

Defines

• #defineuip_sethostaddr(addr)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.30 uIP configuration functions 112

Set the IP address of this host.

• #defineuip_gethostaddr(addr)

Get the IP address of this host.

• #defineuip_setdraddr(addr)

Set the default router’s IP address.

• #defineuip_setnetmask(addr)

Set the netmask.

• #defineuip_getdraddr(addr)

Get the default router’s IP address.

• #defineuip_getnetmask(addr)

Get the netmask.

• #defineuip_setethaddr(eaddr)

Specifiy the Ethernet MAC address.

6.30.2 Define Documentation

6.30.2.1 #define uip_getdraddr(addr)

Get the default router’s IP address.

Parameters:
addr A pointer to a uip_ipaddr_t variable that will be filled in with the IP address of the default router.

Definition at line 161 of file uip.h.

6.30.2.2 #define uip_gethostaddr(addr)

Get the IP address of this host.

The IP address is represented as a 4-byte array where the first octet of the IP address is put in the first
member of the 4-byte array.

Example:

uip_ipaddr_t hostaddr;

uip_gethostaddr(&hostaddr);

Parameters:
addr A pointer to a uip_ipaddr_t variable that will be filled in with the currently configured IP address.

Definition at line 126 of file uip.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.30 uIP configuration functions 113

6.30.2.3 #define uip_getnetmask(addr)

Get the netmask.

Parameters:
addr A pointer to a uip_ipaddr_t variable that will be filled in with the value of the netmask.

Definition at line 171 of file uip.h.

6.30.2.4 #define uip_setdraddr(addr)

Set the default router’s IP address.

Parameters:
addr A pointer to a uip_ipaddr_t variable containing the IP address of the default router.

See also:
uip_ipaddr()

Definition at line 138 of file uip.h.

6.30.2.5 #define uip_setethaddr(eaddr)

Specifiy the Ethernet MAC address.

The ARP code needs to know the MAC address of the Ethernet card in order to be able to respond to ARP
queries and to generate working Ethernet headers.

Note:
This macro only specifies the Ethernet MAC address to the ARP code. It cannot be used to change the
MAC address of the Ethernet card.

Parameters:
eaddr A pointer to a structuip_eth_addrcontaining the Ethernet MAC address of the Ethernet card.

Definition at line 134 of file uip_arp.h.

6.30.2.6 #define uip_sethostaddr(addr)

Set the IP address of this host.

The IP address is represented as a 4-byte array where the first octet of the IP address is put in the first
member of the 4-byte array.

Example:

uip_ipaddr_t addr;

uip_ipaddr(&addr, 192,168,1,2);
uip_sethostaddr(&addr);

Parameters:
addr A pointer to an IP address of type uip_ipaddr_t;

See also:
uip_ipaddr()

Definition at line 106 of file uip.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.31 uIP initialization functions 114

6.30.2.7 #define uip_setnetmask(addr)

Set the netmask.

Parameters:
addr A pointer to a uip_ipaddr_t variable containing the IP address of the netmask.

See also:
uip_ipaddr()

Definition at line 150 of file uip.h.

6.31 uIP initialization functions

6.31.1 Detailed Description

The uIP initialization functions are used for booting uIP.

Functions

• void uip_init (void)

uIP initialization function.

• void uip_setipid(u16_t id)

uIP initialization function.

6.31.2 Function Documentation

6.31.2.1 void uip_init (void)

uIP initialization function.

This function should be called at boot up to initilize the uIP TCP/IP stack.

Definition at line 371 of file uip.c.

References uip_udp_conn::lport, uip_conn::tcpstateflags, UIP_CLOSED, and UIP_LISTENPORTS.

6.31.2.2 void uip_setipid (u16_tid)

uIP initialization function.

This function may be used at boot time to set the initial ip_id.

Definition at line 173 of file uip.c.

6.32 uIP device driver functions

6.32.1 Detailed Description

These functions are used by a network device driver for interacting with uIP.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.32 uIP device driver functions 115

Defines

• #defineuip_input()

Process an incoming packet.

• #defineuip_periodic(conn)

Periodic processing for a connection identified by its number.

• #defineuip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED)
• #defineuip_periodic_conn(conn)

Perform periodic processing for a connection identified by a pointer to its structure.

• #defineuip_poll_conn(conn)

Reuqest that a particular connection should be polled.

• #defineuip_udp_periodic(conn)

Periodic processing for a UDP connection identified by its number.

• #defineuip_udp_periodic_conn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

Variables

• u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

6.32.2 Define Documentation

6.32.2.1 #define uip_input()

Process an incoming packet.

This function should be called when the device driver has received a packet from the network. The packet
from the device driver must be present in the uip_buf buffer, and the length of the packet should be placed
in the uip_len variable.

When the function returns, there may be an outbound packet placed in the uip_buf packet buffer. If so, the
uip_len variable is set to the length of the packet. If no packet is to be sent out, the uip_len variable is set
to 0.

The usual way of calling the function is presented by the source code below.

uip_len = devicedriver_poll();
if(uip_len > 0) {

uip_input();
if(uip_len > 0) {

devicedriver_send();
}

}

Note:
If you are writing a uIP device driver that needs ARP (Address Resolution Protocol), e.g., when run-
ning uIP over Ethernet, you will need to call the uIP ARP code before calling this function:

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.32 uIP device driver functions 116

#define BUF ((struct uip_eth_hdr *)&uip_buf[0])
uip_len = ethernet_devicedrver_poll();
if(uip_len > 0) {

if(BUF->type == HTONS(UIP_ETHTYPE_IP)) {
uip_arp_ipin();
uip_input();
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
} else if(BUF->type == HTONS(UIP_ETHTYPE_ARP)) {

uip_arp_arpin();
if(uip_len > 0) {

ethernet_devicedriver_send();
}

}

Definition at line 257 of file uip.h.

6.32.2.2 #define uip_periodic(conn)

Periodic processing for a connection identified by its number.

This function does the necessary periodic processing (timers, polling) for a uIP TCP conneciton, and should
be called when the periodic uIP timer goes off. It should be called for every connection, regardless of
whether they are open of closed.

When the function returns, it may have an outbound packet waiting for service in the uIP packet buffer,
and if so the uip_len variable is set to a value larger than zero. The device driver should be called to send
out the packet.

The ususal way of calling the function is through a for() loop like this:

for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {

devicedriver_send();
}

}

Note:
If you are writing a uIP device driver that needs ARP (Address Resolution Protocol), e.g., when run-
ning uIP over Ethernet, you will need to call theuip_arp_out()function before calling the device
driver:

for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
}

Parameters:
conn The number of the connection which is to be periodically polled.

Definition at line 301 of file uip.h.

6.32.2.3 #define uip_periodic_conn(conn)

Perform periodic processing for a connection identified by a pointer to its structure.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.32 uIP device driver functions 117

Same asuip_periodic()but takes a pointer to the actualuip_connstruct instead of an integer as its argument.
This function can be used to force periodic processing of a specific connection.

Parameters:
conn A pointer to theuip_connstruct for the connection to be processed.

Definition at line 323 of file uip.h.

6.32.2.4 #define uip_poll_conn(conn)

Reuqest that a particular connection should be polled.

Similar to uip_periodic_conn()but does not perform any timer processing. The application is polled for
new data.

Parameters:
conn A pointer to theuip_connstruct for the connection to be processed.

Definition at line 337 of file uip.h.

6.32.2.5 #define uip_udp_periodic(conn)

Periodic processing for a UDP connection identified by its number.

This function is essentially the same asuip_periodic(), but for UDP connections. It is called in a similar
fashion as theuip_periodic()function:

for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {

devicedriver_send();
}

}

Note:
As for theuip_periodic()function, special care has to be taken when using uIP together with ARP and
Ethernet:

for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
}

Parameters:
conn The number of the UDP connection to be processed.

Definition at line 373 of file uip.h.

6.32.2.6 #define uip_udp_periodic_conn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

Same asuip_udp_periodic()but takes a pointer to the actualuip_connstruct instead of an integer as its
argument. This function can be used to force periodic processing of a specific connection.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.33 uIP application functions 118

Parameters:
conn A pointer to theuip_udp_connstruct for the connection to be processed.

Definition at line 390 of file uip.h.

6.32.3 Variable Documentation

6.32.3.1 u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

The uip_buf array is used to hold incoming and outgoing packets. The device driver should place incoming
data into this buffer. When sending data, the device driver should read the link level headers and the TCP/IP
headers from this buffer. The size of the link level headers is configured by the UIP_LLH_LEN define.

Note:
The application data need not be placed in this buffer, so the device driver must read it from the place
pointed to by the uip_appdata pointer as illustrated by the following example:

void
devicedriver_send(void)
{

hwsend(&uip_buf[0], UIP_LLH_LEN);
if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) {

hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN);
} else {

hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN);
hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN);

}
}

Examples:
example-packet-service.c.

Definition at line 131 of file uip.c.

Referenced by tr1001_poll(), uip_arp_out(), and uip_fw_forward().

6.33 uIP application functions

6.33.1 Detailed Description

Functions used by an application running of top of uIP.

Defines

• #defineuip_outstanding(conn) ((conn)→ len)
• #defineuip_datalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.

• #defineuip_urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

• #defineuip_close()

Close the current connection.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.33 uIP application functions 119

• #defineuip_abort()

Abort the current connection.

• #defineuip_stop()

Tell the sending host to stop sending data.

• #defineuip_stopped(conn)

Find out if the current connection has been previously stopped withuip_stop().

• #defineuip_restart()

Restart the current connection, if is has previously been stopped withuip_stop().

• #defineuip_udpconnection()

Is the current connection a UDP connection?

• #defineuip_newdata()

Is new incoming data available?

• #defineuip_acked()

Has previously sent data been acknowledged?

• #defineuip_connected()

Has the connection just been connected?

• #defineuip_closed()

Has the connection been closed by the other end?

• #defineuip_aborted()

Has the connection been aborted by the other end?

• #defineuip_timedout()

Has the connection timed out?

• #defineuip_rexmit()

Do we need to retransmit previously data?

• #defineuip_poll()

Is the connection being polled by uIP?

• #defineuip_initialmss()

Get the initial maxium segment size (MSS) of the current connection.

• #defineuip_mss()

Get the current maxium segment size that can be sent on the current connection.

• #defineuip_udp_remove(conn)

Removed a UDP connection.

• #defineuip_udp_bind(conn, port)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.33 uIP application functions 120

Bind a UDP connection to a local port.

• #defineuip_udp_send(len)

Send a UDP datagram of length len on the current connection.

Functions

• void uip_listen(u16_t port)

Start listening to the specified port.

• void uip_unlisten(u16_t port)

Stop listening to the specified port.

• uip_conn∗ uip_connect(uip_ipaddr_t∗ripaddr, u16_t port)

Connect to a remote host using TCP.

• void uip_send(const void∗data, int len)

Send data on the current connection.

• uip_udp_conn∗ uip_udp_new(uip_ipaddr_t∗ripaddr, u16_t rport)

Set up a new UDP connection.

6.33.2 Define Documentation

6.33.2.1 #define uip_abort()

Abort the current connection.

This function will abort (reset) the current connection, and is usually used when an error has occured that
prevents using theuip_close()function.

Definition at line 581 of file uip.h.

6.33.2.2 #define uip_aborted()

Has the connection been aborted by the other end?

Non-zero if the current connection has been aborted (reset) by the remote host.

Examples:
example-psock-server.c.

Definition at line 680 of file uip.h.

6.33.2.3 #define uip_acked()

Has previously sent data been acknowledged?

Will reduce to non-zero if the previously sent data has been acknowledged by the remote host. This means
that the application can send new data.

Definition at line 648 of file uip.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.33 uIP application functions 121

6.33.2.4 #define uip_close()

Close the current connection.

This function will close the current connection in a nice way.

Definition at line 570 of file uip.h.

6.33.2.5 #define uip_closed()

Has the connection been closed by the other end?

Is non-zero if the connection has been closed by the remote host. The application may then do the necessary
clean-ups.

Examples:
example-psock-server.c.

Definition at line 670 of file uip.h.

6.33.2.6 #define uip_connected()

Has the connection just been connected?

Reduces to non-zero if the current connection has been connected to a remote host. This will happen both
if the connection has been actively opened (withuip_connect()) or passively opened (withuip_listen()).

Examples:
example-psock-server.c.

Definition at line 660 of file uip.h.

Referenced by tcpip_uipcall().

6.33.2.7 #define uip_datalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.

The test function uip_data() must first be used to check if there is any data available at all.

Definition at line 550 of file uip.h.

6.33.2.8 #define uip_mss()

Get the current maxium segment size that can be sent on the current connection.

The current maxiumum segment size that can be sent on the connection is computed from the receiver’s
window and the MSS of the connection (which also is available by callinguip_initialmss()).

Definition at line 737 of file uip.h.

6.33.2.9 #define uip_newdata()

Is new incoming data available?

Will reduce to non-zero if there is new data for the application present at the uip_appdata pointer. The size
of the data is avaliable through the uip_len variable.

Definition at line 637 of file uip.h.

Referenced by PROCESS_THREAD(), and psock_newdata().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.33 uIP application functions 122

6.33.2.10 #define uip_poll()

Is the connection being polled by uIP?

Is non-zero if the reason the application is invoked is that the current connection has been idle for a while
and should be polled.

The polling event can be used for sending data without having to wait for the remote host to send data.

Definition at line 716 of file uip.h.

Referenced by PROCESS_THREAD().

6.33.2.11 #define uip_restart()

Restart the current connection, if is has previously been stopped withuip_stop().

This function will open the receiver’s window again so that we start receiving data for the current connec-
tion.

Definition at line 610 of file uip.h.

6.33.2.12 #define uip_rexmit()

Do we need to retransmit previously data?

Reduces to non-zero if the previously sent data has been lost in the network, and the application should
retransmit it. The application should send the exact same data as it did the last time, using theuip_send()
function.

Definition at line 702 of file uip.h.

6.33.2.13 #define uip_stop()

Tell the sending host to stop sending data.

This function will close our receiver’s window so that we stop receiving data for the current connection.

Definition at line 591 of file uip.h.

6.33.2.14 #define uip_timedout()

Has the connection timed out?

Non-zero if the current connection has been aborted due to too many retransmissions.

Examples:
example-psock-server.c.

Definition at line 690 of file uip.h.

6.33.2.15 #define uip_udp_bind(conn, port)

Bind a UDP connection to a local port.

Parameters:
conn A pointer to theuip_udp_connstructure for the connection.

port The local port number, in network byte order.

Definition at line 787 of file uip.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.33 uIP application functions 123

6.33.2.16 #define uip_udp_remove(conn)

Removed a UDP connection.

Parameters:
conn A pointer to theuip_udp_connstructure for the connection.

Definition at line 775 of file uip.h.

Referenced by PROCESS_THREAD().

6.33.2.17 #define uip_udp_send(len)

Send a UDP datagram of length len on the current connection.

This function can only be called in response to a UDP event (poll or newdata). The data must be present in
the uip_buf buffer, at the place pointed to by the uip_appdata pointer.

Parameters:
len The length of the data in the uip_buf buffer.

Definition at line 800 of file uip.h.

6.33.2.18 #define uip_udpconnection()

Is the current connection a UDP connection?

This function checks whether the current connection is a UDP connection.

Definition at line 626 of file uip.h.

6.33.2.19 #define uip_urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

Note:
The configuration parameter UIP_URGDATA must be set for this function to be enabled.

Definition at line 561 of file uip.h.

6.33.3 Function Documentation

6.33.3.1 structuip_conn∗ uip_connect (uip_ipaddr_t ∗ ripaddr, u16_tport)

Connect to a remote host using TCP.

This function is used to start a new connection to the specified port on the specied host. It allocates a new
connection identifier, sets the connection to the SYN_SENT state and sets the retransmission timer to 0.
This will cause a TCP SYN segment to be sent out the next time this connection is periodically processed,
which usually is done within 0.5 seconds after the call touip_connect().

Note:
This function is avaliable only if support for active open has been configured by defining UIP_-
ACTIVE_OPEN to 1 inuipopt.h.
Since this function requires the port number to be in network byte order, a conversion usingHTONS()
or htons()is necessary.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.33 uIP application functions 124

uip_ipaddr_t ipaddr;

uip_ipaddr(&ipaddr, 192,168,1,2);
uip_connect(&ipaddr, HTONS(80));

Parameters:
ripaddr The IP address of the remote hot.

port A 16-bit port number in network byte order.

Returns:
A pointer to the uIP connection identifier for the new connection, or NULL if no connection could be
allocated.

Referenced by tcp_connect().

6.33.3.2 void uip_listen (u16_tport)

Start listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_listen(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Definition at line 521 of file uip.c.

References UIP_LISTENPORTS.

Referenced by tcp_listen().

6.33.3.3 void uip_send (const void∗ data, int len)

Send data on the current connection.

This function is used to send out a single segment of TCP data. Only applications that have been invoked
by uIP for event processing can send data.

The amount of data that actually is sent out after a call to this funcion is determined by the maximum
amount of data TCP allows. uIP will automatically crop the data so that only the appropriate amount of
data is sent. The functionuip_mss()can be used to query uIP for the amount of data that actually will be
sent.

Note:
This function does not guarantee that the sent data will arrive at the destination. If the data is lost in the
network, the application will be invoked with theuip_rexmit()event being set. The application will
then have to resend the data using this function.

Parameters:
data A pointer to the data which is to be sent.

len The maximum amount of data bytes to be sent.

Examples:
example-program.c.

Definition at line 1880 of file uip.c.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.34 uIP conversion functions 125

6.33.3.4 structuip_udp_conn∗ uip_udp_new (uip_ipaddr_t ∗ ripaddr, u16_t rport)

Set up a new UDP connection.

This function sets up a new UDP connection. The function will automatically allocate an unused local port
for the new connection. However, another port can be chosen by using theuip_udp_bind()call, after the
uip_udp_new()function has been called.

Example:

uip_ipaddr_t addr;
struct uip_udp_conn *c;

uip_ipaddr(&addr, 192,168,2,1);
c = uip_udp_new(&addr, HTONS(12345));
if(c != NULL) {

uip_udp_bind(c, HTONS(12344));
}

Parameters:
ripaddr The IP address of the remote host.

rport The remote port number in network byte order.

Returns:
Theuip_udp_connstructure for the new connection or NULL if no connection could be allocated.

Definition at line 465 of file uip.c.

References htons(), HTONS, uip_udp_conn::lport, NULL, uip_udp_conn::ripaddr, uip_udp_conn::rport,
uip_udp_conn::ttl, uip_ipaddr_copy, and UIP_TTL.

Referenced by udp_new().

6.33.3.5 void uip_unlisten (u16_tport)

Stop listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_unlisten(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Definition at line 510 of file uip.c.

References UIP_LISTENPORTS.

Referenced by tcp_unlisten().

6.34 uIP conversion functions

6.34.1 Detailed Description

These functions can be used for converting between different data formats used by uIP.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.34 uIP conversion functions 126

Defines

• #defineuip_ipaddr(addr, addr0, addr1, addr2, addr3)

Construct an IP address from four bytes.

• #defineuip_ip6addr(addr, addr0, addr1, addr2, addr3, addr4, addr5, addr6, addr7)

Construct an IPv6 address from eight 16-bit words.

• #defineuip_ipaddr_copy(dest, src)

Copy an IP address to another IP address.

• #defineuip_ipaddr_cmp(addr1, addr2)

Compare two IP addresses.

• #defineuip_ipaddr_maskcmp(addr1, addr2, mask)

Compare two IP addresses with netmasks.

• #defineuip_ipaddr_mask(dest, src, mask)

Mask out the network part of an IP address.

• #defineuip_ipaddr1(addr)

Pick the first octet of an IP address.

• #defineuip_ipaddr2(addr)

Pick the second octet of an IP address.

• #defineuip_ipaddr3(addr)

Pick the third octet of an IP address.

• #defineuip_ipaddr4(addr)

Pick the fourth octet of an IP address.

• #defineHTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

• #definentohshtons

Functions

• u16_thtons(u16_t val)

Convert 16-bit quantity from host byte order to network byte order.

• unsigned charuiplib_ipaddrconv(char∗addrstr, unsigned char∗addr)

Convert a textual representation of an IP address to a numerical representation.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.34 uIP conversion functions 127

6.34.2 Define Documentation

6.34.2.1 #define HTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

This macro is primarily used for converting constants from host byte order to network byte order. For
converting variables to network byte order, use thehtons()function instead.

Examples:
example-program.c, andexample-psock-server.c.

Definition at line 1068 of file uip.h.

Referenced by htons(), PROCESS_THREAD(), uip_arp_arpin(), uip_arp_out(), uip_fw_forward(), uip_-
process(), and uip_udp_new().

6.34.2.2 #define uip_ip6addr(addr, addr0, addr1, addr2, addr3, addr4, addr5, addr6, addr7)

Construct an IPv6 address from eight 16-bit words.

This function constructs an IPv6 address.

Definition at line 852 of file uip.h.

6.34.2.3 #define uip_ipaddr(addr, addr0, addr1, addr2, addr3)

Construct an IP address from four bytes.

This function constructs an IP address of the type that uIP handles internally from four bytes. The function
is handy for specifying IP addresses to use with e.g. theuip_connect()function.

Example:

uip_ipaddr_t ipaddr;
struct uip_conn *c;

uip_ipaddr(&ipaddr, 192,168,1,2);
c = uip_connect(&ipaddr, HTONS(80));

Parameters:
addr A pointer to a uip_ipaddr_t variable that will be filled in with the IP address.

addr0 The first octet of the IP address.

addr1 The second octet of the IP address.

addr2 The third octet of the IP address.

addr3 The forth octet of the IP address.

Definition at line 840 of file uip.h.

Referenced by udp_broadcast_new().

6.34.2.4 #define uip_ipaddr1(addr)

Pick the first octet of an IP address.

Picks out the first octet of an IP address.

Example:

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.34 uIP conversion functions 128

uip_ipaddr_t ipaddr;
u8_t octet;

uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr1(&ipaddr);

In the example above, the variable "octet" will contain the value 1.

Definition at line 995 of file uip.h.

6.34.2.5 #define uip_ipaddr2(addr)

Pick the second octet of an IP address.

Picks out the second octet of an IP address.

Example:

uip_ipaddr_t ipaddr;
u8_t octet;

uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr2(&ipaddr);

In the example above, the variable "octet" will contain the value 2.

Definition at line 1015 of file uip.h.

6.34.2.6 #define uip_ipaddr3(addr)

Pick the third octet of an IP address.

Picks out the third octet of an IP address.

Example:

uip_ipaddr_t ipaddr;
u8_t octet;

uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr3(&ipaddr);

In the example above, the variable "octet" will contain the value 3.

Definition at line 1035 of file uip.h.

6.34.2.7 #define uip_ipaddr4(addr)

Pick the fourth octet of an IP address.

Picks out the fourth octet of an IP address.

Example:

uip_ipaddr_t ipaddr;
u8_t octet;

uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr4(&ipaddr);

In the example above, the variable "octet" will contain the value 4.

Definition at line 1055 of file uip.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.34 uIP conversion functions 129

6.34.2.8 #define uip_ipaddr_cmp(addr1, addr2)

Compare two IP addresses.

Compares two IP addresses.

Example:

uip_ipaddr_t ipaddr1, ipaddr2;

uip_ipaddr(&ipaddr1, 192,16,1,2);
if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) {

printf("They are the same");
}

Parameters:
addr1 The first IP address.

addr2 The second IP address.

Definition at line 911 of file uip.h.

Referenced by uip_arp_arpin(), uip_arp_out(), and uip_process().

6.34.2.9 #define uip_ipaddr_copy(dest, src)

Copy an IP address to another IP address.

Copies an IP address from one place to another.

Example:

uip_ipaddr_t ipaddr1, ipaddr2;

uip_ipaddr(&ipaddr1, 192,16,1,2);
uip_ipaddr_copy(&ipaddr2, &ipaddr1);

Parameters:
dest The destination for the copy.

src The source from where to copy.

Definition at line 882 of file uip.h.

Referenced by resolv_conf(), uip_arp_out(), uip_process(), and uip_udp_new().

6.34.2.10 #define uip_ipaddr_mask(dest, src, mask)

Mask out the network part of an IP address.

Masks out the network part of an IP address, given the address and the netmask.

Example:

uip_ipaddr_t ipaddr1, ipaddr2, netmask;

uip_ipaddr(&ipaddr1, 192,16,1,2);
uip_ipaddr(&netmask, 255,255,255,0);
uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask);

In the example above, the variable "ipaddr2" will contain the IP address 192.168.1.0.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.34 uIP conversion functions 130

Parameters:
dest Where the result is to be placed.

src The IP address.

mask The netmask.

Definition at line 972 of file uip.h.

6.34.2.11 #define uip_ipaddr_maskcmp(addr1, addr2, mask)

Compare two IP addresses with netmasks.

Compares two IP addresses with netmasks. The masks are used to mask out the bits that are to be compared.

Example:

uip_ipaddr_t ipaddr1, ipaddr2, mask;

uip_ipaddr(&mask, 255,255,255,0);
uip_ipaddr(&ipaddr1, 192,16,1,2);
uip_ipaddr(&ipaddr2, 192,16,1,3);
if(uip_ipaddr_maskcmp(&ipaddr1, &ipaddr2, &mask)) {

printf("They are the same");
}

Parameters:
addr1 The first IP address.

addr2 The second IP address.

mask The netmask.

Definition at line 941 of file uip.h.

Referenced by uip_arp_out().

6.34.3 Function Documentation

6.34.3.1 u16_t htons (u16_tval)

Convert 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For
converting constants to network byte order, use theHTONS()macro instead.

Definition at line 1874 of file uip.c.

References HTONS.

Referenced by uip_chksum(), uip_ipchksum(), and uip_udp_new().

6.34.3.2 unsigned char uiplib_ipaddrconv (char∗ addrstr, unsigned char∗ addr)

Convert a textual representation of an IP address to a numerical representation.

This function takes a textual representation of an IP address in the form a.b.c.d and converts it into a 4-byte
array that can be used by other uIP functions.

Parameters:
addrstr A pointer to a string containing the IP address in textual form.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.35 Variables used in uIP device drivers 131

addr A pointer to a 4-byte array that will be filled in with the numerical representation of the address.

Return values:
0 If the IP address could not be parsed.

Non-zero If the IP address was parsed.

Definition at line 43 of file uiplib.c.

6.35 Variables used in uIP device drivers

6.35.1 Detailed Description

uIP has a few global variables that are used in device drivers for uIP.

Variables

• u16_tuip_len

The length of the packet in the uip_buf buffer.

6.35.2 Variable Documentation

6.35.2.1 u16_tuip_len

The length of the packet in the uip_buf buffer.

The global variable uip_len holds the length of the packet in the uip_buf buffer.

When the network device driver calls the uIP input function, uip_len should be set to the length of the
packet in the uip_buf buffer.

When sending packets, the device driver should use the contents of the uip_len variable to determine the
length of the outgoing packet.

Examples:
example-packet-service.c.

Definition at line 147 of file uip.c.

Referenced by tcpip_input(), uip_arp_arpin(), uip_arp_out(), uip_fw_forward(), uip_fw_output(), and
uip_split_output().

6.36 Configuration options for uIP

6.36.1 Detailed Description

uIP is configured using the per-project configuration file "uipopt.h".

This file contains all compile-time options for uIP and should be tweaked to match each specific project.
The uIP distribution contains a documented example "uipopt.h" that can be copied and modified for each
project.

Note:
Contiki does not use theuipopt.hfile to configure uIP, but uses a per-port uip-conf.h file that should be
edited instead.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.37 Static configuration options 132

Files

• file uipopt.h

Configuration options for uIP.

Modules

• Static configuration options

These configuration options can be used for setting the IP address settings statically, but only if UIP_-
FIXEDADDR is set to 1.

Defines

• #defineUIP_LITTLE_ENDIAN 3412
• #defineUIP_BIG_ENDIAN1234

6.37 Static configuration options

6.37.1 Detailed Description

These configuration options can be used for setting the IP address settings statically, but only if UIP_-
FIXEDADDR is set to 1.

The configuration options for a specific node includes IP address, netmask and default router as well as the
Ethernet address. The netmask, default router and Ethernet address are appliciable only if uIP should be
run over Ethernet.

All of these should be changed to suit your project.

Defines

• #defineUIP_FIXEDADDR

Determines if uIP should use a fixed IP address or not.

• #defineUIP_PINGADDRCONF

Ping IP address asignment.

• #defineUIP_FIXEDETHADDR

Specifies if the uIP ARP module should be compiled with a fixed Ethernet MAC address or not.

6.37.2 Define Documentation

6.37.2.1 #define UIP_FIXEDADDR

Determines if uIP should use a fixed IP address or not.

If uIP should use a fixed IP address, the settings are set in theuipopt.hfile. If not, the macrosuip_-
sethostaddr(), uip_setdraddr()anduip_setnetmask()should be used instead.

Definition at line 97 of file uipopt.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.38 IP configuration options 133

6.37.2.2 #define UIP_FIXEDETHADDR

Specifies if the uIP ARP module should be compiled with a fixed Ethernet MAC address or not.

If this configuration option is 0, the macrouip_setethaddr()can be used to specify the Ethernet address at
run-time.

Definition at line 127 of file uipopt.h.

6.37.2.3 #define UIP_PINGADDRCONF

Ping IP address asignment.

uIP uses a "ping" packets for setting its own IP address if this option is set. If so, uIP will start with an
empty IP address and the destination IP address of the first incoming "ping" (ICMP echo) packet will be
used for setting the hosts IP address.

Note:
This works only if UIP_FIXEDADDR is 0.

Definition at line 114 of file uipopt.h.

6.38 IP configuration options

Defines

• #defineUIP_TTL 64

The IP TTL (time to live) of IP packets sent by uIP.

• #defineUIP_REASSEMBLY

Turn on support for IP packet reassembly.

• #defineUIP_REASS_MAXAGE40

The maximum time an IP fragment should wait in the reassembly buffer before it is dropped.

6.38.1 Define Documentation

6.38.1.1 #define UIP_REASSEMBLY

Turn on support for IP packet reassembly.

uIP supports reassembly of fragmented IP packets. This features requires an additonal amount of RAM
to hold the reassembly buffer and the reassembly code size is approximately 700 bytes. The reassembly
buffer is of the same size as the uip_buf buffer (configured by UIP_BUFSIZE).

Note:
IP packet reassembly is not heavily tested.

Definition at line 156 of file uipopt.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.39 UDP configuration options 134

6.38.1.2 #define UIP_TTL 64

The IP TTL (time to live) of IP packets sent by uIP.

This should normally not be changed.

Definition at line 141 of file uipopt.h.

Referenced by uip_process(), and uip_udp_new().

6.39 UDP configuration options

6.39.1 Detailed Description

Note:
The UDP support in uIP is still not entirely complete; there is no support for sending or receiving
broadcast or multicast packets, but it works well enough to support a number of vital applications such
as DNS queries, though

Defines

• #defineUIP_UDP

Toggles wether UDP support should be compiled in or not.

• #defineUIP_UDP_CHECKSUMS

Toggles if UDP checksums should be used or not.

• #defineUIP_UDP_CONNS

The maximum amount of concurrent UDP connections.

6.39.2 Define Documentation

6.39.2.1 #define UIP_UDP_CHECKSUMS

Toggles if UDP checksums should be used or not.

Note:
Support for UDP checksums is currently not included in uIP, so this option has no function.

Definition at line 200 of file uipopt.h.

6.40 TCP configuration options

Defines

• #defineUIP_ACTIVE_OPEN

Determines if support for opening connections from uIP should be compiled in.

• #defineUIP_CONNS

The maximum number of simultaneously open TCP connections.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.40 TCP configuration options 135

• #defineUIP_LISTENPORTS

The maximum number of simultaneously listening TCP ports.

• #defineUIP_URGDATA

Determines if support for TCP urgent data notification should be compiled in.

• #defineUIP_RTO3

The initial retransmission timeout counted in timer pulses.

• #defineUIP_MAXRTX 8

The maximum number of times a segment should be retransmitted before the connection should be aborted.

• #defineUIP_MAXSYNRTX 5

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

• #defineUIP_TCP_MSS(UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)

The TCP maximum segment size.

• #defineUIP_RECEIVE_WINDOW

The size of the advertised receiver’s window.

• #defineUIP_TIME_WAIT_TIMEOUT 120

How long a connection should stay in the TIME_WAIT state.

6.40.1 Define Documentation

6.40.1.1 #define UIP_ACTIVE_OPEN

Determines if support for opening connections from uIP should be compiled in.

If the applications that are running on top of uIP for this project do not need to open outgoing TCP con-
nections, this configration option can be turned off to reduce the code size of uIP.

Definition at line 238 of file uipopt.h.

6.40.1.2 #define UIP_CONNS

The maximum number of simultaneously open TCP connections.

Since the TCP connections are statically allocated, turning this configuration knob down results in less
RAM used. Each TCP connection requires approximatly 30 bytes of memory.

Definition at line 250 of file uipopt.h.

6.40.1.3 #define UIP_LISTENPORTS

The maximum number of simultaneously listening TCP ports.

Each listening TCP port requires 2 bytes of memory.

Definition at line 264 of file uipopt.h.

Referenced by tcp_listen(), tcp_unlisten(), tcpip_uipcall(), uip_init(), uip_listen(), uip_process(), and uip_-
unlisten().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.40 TCP configuration options 136

6.40.1.4 #define UIP_MAXRTX 8

The maximum number of times a segment should be retransmitted before the connection should be aborted.

This should not be changed.

Definition at line 293 of file uipopt.h.

Referenced by uip_process().

6.40.1.5 #define UIP_MAXSYNRTX 5

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

This should not need to be changed.

Definition at line 302 of file uipopt.h.

Referenced by uip_process().

6.40.1.6 #define UIP_RECEIVE_WINDOW

The size of the advertised receiver’s window.

Should be set low (i.e., to the size of the uip_buf buffer) is the application is slow to process incoming data,
or high (32768 bytes) if the application processes data quickly.

Definition at line 322 of file uipopt.h.

Referenced by uip_process().

6.40.1.7 #define UIP_RTO 3

The initial retransmission timeout counted in timer pulses.

This should not be changed.

Definition at line 285 of file uipopt.h.

Referenced by uip_process().

6.40.1.8 #define UIP_TCP_MSS (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)

The TCP maximum segment size.

This is should not be to set to more than UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN.

Definition at line 310 of file uipopt.h.

Referenced by uip_process().

6.40.1.9 #define UIP_TIME_WAIT_TIMEOUT 120

How long a connection should stay in the TIME_WAIT state.

This configiration option has no real implication, and it should be left untouched.

Definition at line 333 of file uipopt.h.

Referenced by uip_process().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.41 ARP configuration options 137

6.40.1.10 #define UIP_URGDATA

Determines if support for TCP urgent data notification should be compiled in.

Urgent data (out-of-band data) is a rarely used TCP feature that very seldom would be required.

Definition at line 278 of file uipopt.h.

6.41 ARP configuration options

Defines

• #defineUIP_ARPTAB_SIZE

The size of the ARP table.

• #defineUIP_ARP_MAXAGE120

The maxium age of ARP table entries measured in 10ths of seconds.

6.41.1 Define Documentation

6.41.1.1 #define UIP_ARP_MAXAGE 120

The maxium age of ARP table entries measured in 10ths of seconds.

An UIP_ARP_MAXAGE of 120 corresponds to 20 minutes (BSD default).

Definition at line 363 of file uipopt.h.

Referenced by uip_arp_timer().

6.41.1.2 #define UIP_ARPTAB_SIZE

The size of the ARP table.

This option should be set to a larger value if this uIP node will have many connections from the local
network.

Definition at line 354 of file uipopt.h.

6.42 General configuration options

Defines

• #defineUIP_BUFSIZE

The size of the uIP packet buffer.

• #defineUIP_STATISTICS

Determines if statistics support should be compiled in.

• #defineUIP_LOGGING

Determines if logging of certain events should be compiled in.

• #defineUIP_BROADCAST

Broadcast support.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.42 General configuration options 138

• #defineUIP_LLH_LEN

The link level header length.

Functions

• void uip_log(char∗msg)

Print out a uIP log message.

6.42.1 Define Documentation

6.42.1.1 #define UIP_BROADCAST

Broadcast support.

This flag configures IP broadcast support. This is useful only together with UDP.

Definition at line 428 of file uipopt.h.

6.42.1.2 #define UIP_BUFSIZE

The size of the uIP packet buffer.

The uIP packet buffer should not be smaller than 60 bytes, and does not need to be larger than 1500 bytes.
Lower size results in lower TCP throughput, larger size results in higher TCP throughput.

Definition at line 384 of file uipopt.h.

Referenced by tr1001_poll(), and uip_split_output().

6.42.1.3 #define UIP_LLH_LEN

The link level header length.

This is the offset into the uip_buf where the IP header can be found. For Ethernet, this should be set to 14.
For SLIP, this should be set to 0.

Definition at line 453 of file uipopt.h.

Referenced by tr1001_poll(), uip_arp_out(), uip_fw_forward(), uip_ipchksum(), uip_process(), and uip_-
split_output().

6.42.1.4 #define UIP_LOGGING

Determines if logging of certain events should be compiled in.

This is useful mostly for debugging. The functionuip_log()must be implemented to suit the architecture
of the project, if logging is turned on.

Definition at line 413 of file uipopt.h.

6.42.1.5 #define UIP_STATISTICS

Determines if statistics support should be compiled in.

The statistics is useful for debugging and to show the user.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.43 CPU architecture configuration 139

Definition at line 398 of file uipopt.h.

6.42.2 Function Documentation

6.42.2.1 void uip_log (char∗ msg)

Print out a uIP log message.

This function must be implemented by the module that uses uIP, and is called by uIP whenever a log
message is generated.

6.43 CPU architecture configuration

6.43.1 Detailed Description

The CPU architecture configuration is where the endianess of the CPU on which uIP is to be run is specified.

Most CPUs today are little endian, and the most notable exception are the Motorolas which are big endian.
The BYTE_ORDER macro should be changed to reflect the CPU architecture on which uIP is to be run.

Defines

• #defineUIP_BYTE_ORDER

The byte order of the CPU architecture on which uIP is to be run.

6.43.2 Define Documentation

6.43.2.1 #define UIP_BYTE_ORDER

The byte order of the CPU architecture on which uIP is to be run.

This option can be either BIG_ENDIAN (Motorola byte order) or LITTLE_ENDIAN (Intel byte order).

Definition at line 480 of file uipopt.h.

6.44 Appication specific configurations

6.44.1 Detailed Description

An uIP application is implemented using a single application function that is called by uIP whenever a
TCP/IP event occurs.

The name of this function must be registered with uIP at compile time using the UIP_APPCALL definition.

uIP applications can store the application state within theuip_connstructure by specifying the type of the
application structure by typedef:ing the type uip_tcp_appstate_t and uip_udp_appstate_t.

The file containing the definitions must be included in theuipopt.hfile.

The following example illustrates how this can look.

void httpd_appcall(void);
#define UIP_APPCALL httpd_appcall

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.45 uIP Address Resolution Protocol 140

struct httpd_state {
u8_t state;
u16_t count;
char *dataptr;
char *script;

};
typedef struct httpd_state uip_tcp_appstate_t

Typedefs

• typedeftcpip_uipstateuip_tcp_appstate_t

The type of the application state that is to be stored in theuip_connstructure.

• typedeftcpip_uipstateuip_udp_appstate_t

The type of the application state that is to be stored in theuip_connstructure.

6.44.2 Typedef Documentation

6.44.2.1 typedefuip_tcp_appstate_t

The type of the application state that is to be stored in theuip_connstructure.

This usually is typedef:ed to a struct holding application state information.

Definition at line 82 of file tcpip.h.

6.44.2.2 typedefuip_udp_appstate_t

The type of the application state that is to be stored in theuip_connstructure.

This usually is typedef:ed to a struct holding application state information.

Definition at line 81 of file tcpip.h.

6.45 uIP Address Resolution Protocol

6.45.1 Detailed Description

The Address Resolution Protocol ARP is used for mapping between IP addresses and link level addresses
such as the Ethernet MAC addresses.

ARP uses broadcast queries to ask for the link level address of a known IP address and the host which is
configured with the IP address for which the query was meant, will respond with its link level address.

Note:
This ARP implementation only supports Ethernet.

Files

• file uip_arp.h

Macros and definitions for the ARP module.

• file uip_arp.c

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.45 uIP Address Resolution Protocol 141

Implementation of the ARP Address Resolution Protocol.

Data Structures

• structuip_eth_hdr

The Ethernet header.

Defines

• #defineUIP_ETHTYPE_ARP0x0806
• #defineUIP_ETHTYPE_IP0x0800
• #defineUIP_ETHTYPE_IPV60x86dd
• #defineuip_arp_ipin()
• #defineARP_REQUEST1
• #defineARP_REPLY2
• #defineARP_HWTYPE_ETH1
• #defineBUF ((struct arp_hdr∗)&uip_buf[0])
• #defineIPBUF ((struct ethip_hdr∗)&uip_buf[0])

Functions

• void uip_arp_init(void)

Initialize the ARP module.

• void uip_arp_arpin(void)

ARP processing for incoming ARP packets.

• void uip_arp_out(void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

• void uip_arp_timer(void)

Periodic ARP processing function.

Variables

• uip_eth_addruip_ethaddr

6.45.2 Function Documentation

6.45.2.1 void uip_arp_arpin (void)

ARP processing for incoming ARP packets.

This function should be called by the device driver when an ARP packet has been received. The function
will act differently depending on the ARP packet type: if it is a reply for a request that we previously sent
out, the ARP cache will be filled in with the values from the ARP reply. If the incoming ARP packet is an
ARP request for our IP address, an ARP reply packet is created and put into the uip_buf[] buffer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.46 uIP TCP throughput booster hack 142

When the function returns, the value of the global variable uip_len indicates whether the device driver
should send out a packet or not. If uip_len is zero, no packet should be sent. If uip_len is non-zero, it
contains the length of the outbound packet that is present in the uip_buf[] buffer.

This function expects an ARP packet with a prepended Ethernet header in the uip_buf[] buffer, and the
length of the packet in the global variable uip_len.

Definition at line 278 of file uip_arp.c.

References uip_eth_addr::addr, ARP_REPLY, ARP_REQUEST, BUF, HTONS, uip_ethaddr, UIP_-
ETHTYPE_ARP, uip_hostaddr, uip_ipaddr_cmp, and uip_len.

6.45.2.2 void uip_arp_out (void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

This function should be called before sending out an IP packet. The function checks the destination IP
address of the IP packet to see what Ethernet MAC address that should be used as a destination MAC
address on the Ethernet.

If the destination IP address is in the local network (determined by logical ANDing of netmask and our IP
address), the function checks the ARP cache to see if an entry for the destination IP address is found. If so,
an Ethernet header is prepended and the function returns. If no ARP cache entry is found for the destination
IP address, the packet in the uip_buf[] is replaced by an ARP request packet for the IP address. The IP
packet is dropped and it is assumed that they higher level protocols (e.g., TCP) eventually will retransmit
the dropped packet.

If the destination IP address is not on the local network, the IP address of the default router is used instead.

When the function returns, a packet is present in the uip_buf[] buffer, and the length of the packet is in the
global variable uip_len.

Definition at line 358 of file uip_arp.c.

References uip_eth_addr::addr, ARP_HWTYPE_ETH, ARP_REQUEST, BUF, HTONS, IPBUF, uip_-
appdata, uip_buf, uip_draddr, uip_ethaddr, UIP_ETHTYPE_ARP, UIP_ETHTYPE_IP, uip_hostaddr, uip_-
ipaddr_cmp, uip_ipaddr_copy, uip_ipaddr_maskcmp, uip_len, UIP_LLH_LEN, uip_netmask, and UIP_-
TCPIP_HLEN.

6.45.2.3 void uip_arp_timer (void)

Periodic ARP processing function.

This function performs periodic timer processing in the ARP module and should be called at regular inter-
vals. The recommended interval is 10 seconds between the calls.

Definition at line 142 of file uip_arp.c.

References UIP_ARP_MAXAGE.

6.46 uIP TCP throughput booster hack

6.46.1 Detailed Description

The basic uIP TCP implementation only allows each TCP connection to have a single TCP segment in
flight at any given time.

Because of the delayed ACK algorithm employed by most TCP receivers, uIP’s limit on the amount of
in-flight TCP segments seriously reduces the maximum achievable throughput for sending data from uIP.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.47 uIP packet forwarding 143

The uip-split module is a hack which tries to remedy this situation. By splitting maximum sized outgoing
TCP segments into two, the delayed ACK algorithm is not invoked at TCP receivers. This improves the
throughput when sending data from uIP by orders of magnitude.

The uip-split module uses the uip-fw module (uIP IP packet forwarding) for sending packets. Therefore,
the uip-fw module must be set up with the appropriate network interfaces for this module to work.

Files

• file uip-split.h

Module for splitting outbound TCP segments in two to avoid the delayed ACK throughput degradation.

Functions

• void uip_split_output(void)

Handle outgoing packets.

6.46.2 Function Documentation

6.46.2.1 void uip_split_output (void)

Handle outgoing packets.

This function inspects an outgoing packet in the uip_buf buffer and sends it out using theuip_fw_output()
function. If the packet is a full-sized TCP segment it will be split into two segments and transmitted
separately. This function should be called instead of the actual device driver output function, or theuip_-
fw_output()function.

The headers of the outgoing packet is assumed to be in the uip_buf buffer and the payload is assumed to be
wherever uip_appdata points. The length of the outgoing packet is assumed to be in the uip_len variable.

Definition at line 49 of file uip-split.c.

References BUF, tcpip_output(), uip_acc32, uip_add32(), uip_appdata, UIP_BUFSIZE, uip_ipchksum(),
UIP_IPH_LEN, uip_len, UIP_LLH_LEN, UIP_PROTO_TCP, uip_tcpchksum(), and UIP_TCPIP_HLEN.

6.47 uIP packet forwarding

Files

• file uip-fw.h

uIP packet forwarding header file.

• file uip-fw.c

uIP packet forwarding.

Data Structures

• structuip_fw_netif

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.47 uIP packet forwarding 144

Representation of a uIP network interface.

Defines

• #defineUIP_FW_NETIF(ip1, ip2, ip3, ip4, nm1, nm2, nm3, nm4, outputfunc)

Intantiating macro for a uIP network interface.

• #defineuip_fw_setipaddr(netif, addr)

Set the IP address of a network interface.

• #defineuip_fw_setnetmask(netif, addr)

Set the netmask of a network interface.

• #defineUIP_FW_LOCAL

A non-error message that indicates that a packet should be processed locally.

• #defineUIP_FW_OK

A non-error message that indicates that something went OK.

• #defineUIP_FW_FORWARDED

A non-error message that indicates that a packet was forwarded.

• #defineUIP_FW_ZEROLEN

A non-error message that indicates that a zero-length packet transmission was attempted, and that no packet
was sent.

• #defineUIP_FW_TOOLARGE

An error message that indicates that a packet that was too large for the outbound network interface was
detected.

• #defineUIP_FW_NOROUTE

An error message that indicates that no suitable interface could be found for an outbound packet.

• #defineUIP_FW_DROPPED

An error message that indicates that a packet that should be forwarded or output was dropped.

• #defineICMP_ECHO8
• #defineICMP_TE11
• #defineBUF ((struct tcpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineICMPBUF ((struct icmpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineFWCACHE_SIZE2
• #defineFW_TIME 20

Functions

• void uip_fw_init (void)

Initialize the uIP packet forwarding module.

• u8_tuip_fw_forward(void)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.47 uIP packet forwarding 145

Forward an IP packet in the uip_buf buffer.

• u8_tuip_fw_output(void)

Output an IP packet on the correct network interface.

• void uip_fw_register(structuip_fw_netif∗netif)

Register a network interface with the forwarding module.

• void uip_fw_default(structuip_fw_netif∗netif)

Register a default network interface.

• void uip_fw_periodic(void)

Perform periodic processing.

6.47.1 Define Documentation

6.47.1.1 #define UIP_FW_NETIF(ip1, ip2, ip3, ip4, nm1, nm2, nm3, nm4, outputfunc)

Intantiating macro for a uIP network interface.

Example:

struct uip_fw_netif slipnetif =
{UIP_FW_NETIF(192,168,76,1, 255,255,255,0, slip_output)};

Parameters:
ip1,ip2,ip3,ip4 The IP address of the network interface.

nm1,nm2,nm3,nm4The netmask of the network interface.

outputfunc A pointer to the output function of the network interface.

Definition at line 80 of file uip-fw.h.

6.47.1.2 #define uip_fw_setipaddr(netif, addr)

Set the IP address of a network interface.

Parameters:
netif A pointer to theuip_fw_netifstructure for the network interface.

addr A pointer to an IP address.

Definition at line 95 of file uip-fw.h.

6.47.1.3 #define uip_fw_setnetmask(netif, addr)

Set the netmask of a network interface.

Parameters:
netif A pointer to theuip_fw_netifstructure for the network interface.

addr A pointer to an IP address representing the netmask.

Definition at line 107 of file uip-fw.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.47 uIP packet forwarding 146

6.47.2 Function Documentation

6.47.2.1 void uip_fw_default (structuip_fw_netif ∗ netif)

Register a default network interface.

All packets that don’t go out on any of the other interfaces will be routed to the default interface.

Parameters:
netif A pointer to the network interface that is to be registered.

Definition at line 514 of file uip-fw.c.

6.47.2.2 u8_t uip_fw_forward (void)

Forward an IP packet in the uip_buf buffer.

Returns:
UIP_FW_FORWARDED if the packet was forwarded, UIP_FW_LOCAL if the packet should be pro-
cessed locally.

Definition at line 407 of file uip-fw.c.

References BUF, HTONS, ICMP_ECHO, ICMPBUF, uip_appdata, uip_buf, UIP_FW_FORWARDED,
UIP_FW_LOCAL, uip_fw_output(), uip_hostaddr, uip_len, UIP_LLH_LEN, UIP_PROTO_ICMP, and
UIP_TCPIP_HLEN.

6.47.2.3 u8_t uip_fw_output (void)

Output an IP packet on the correct network interface.

The IP packet should be present in the uip_buf buffer and its length in the global uip_len variable.

Return values:
UIP_FW_ZEROLEN Indicates that a zero-length packet transmission was attempted and that no

packet was sent.

UIP_FW_NOROUTE No suitable network interface could be found for the outbound packet, and the
packet was not sent.

Returns:
The return value from the actual network interface output function is passed unmodified as a return
value.

Definition at line 359 of file uip-fw.c.

References BUF, uip_fw_netif::next, NULL, uip_fw_netif::output, UIP_FW_NOROUTE, UIP_FW_OK,
UIP_FW_ZEROLEN, and uip_len.

Referenced by uip_fw_forward().

6.47.2.4 void uip_fw_register (structuip_fw_netif ∗ netif)

Register a network interface with the forwarding module.

Parameters:
netif A pointer to the network interface that is to be registered.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.48 uIP hostname resolver functions 147

Definition at line 497 of file uip-fw.c.

References uip_fw_netif::next.

6.48 uIP hostname resolver functions

6.48.1 Detailed Description

The uIP DNS resolver functions are used to lookup a hostname and map it to a numerical IP address.

It maintains a list of resolved hostnames that can be queried with theresolv_lookup()function. New
hostnames can be resolved using theresolv_query()function.

The event resolv_event_found is posted when a hostname has been resolved. It is up to the receiving
process to determine if the correct hostname has been found by calling theresolv_lookup()function with
the hostname.

Files

• file resolv.c

DNS host name to IP address resolver.

Defines

• #defineNULL (void ∗)0
• #defineMAX_RETRIES8
• #defineRESOLV_ENTRIES4

Enumerations

• enum

Functions

• PROCESS_THREAD(resolv_process, ev, data)
• void resolv_query(char∗name)

Queues a name so that a question for the name will be sent out.

• u16_t∗ resolv_lookup(char∗name)

Look up a hostname in the array of known hostnames.

• u16_t∗ resolv_getserver(void)

Obtain the currently configured DNS server.

• void resolv_conf(u16_t∗dnsserver)

Configure a DNS server.

• void resolv_found(char∗name, u16_t∗ipaddr)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.48 uIP hostname resolver functions 148

Variables

• process_event_tresolv_event_found

Event that is broadcasted when a DNS name has been resolved.

6.48.2 Function Documentation

6.48.2.1 void resolv_conf (u16_t∗ dnsserver)

Configure a DNS server.

Parameters:
dnsserverA pointer to a 4-byte representation of the IP address of the DNS server to be configured.

Definition at line 473 of file resolv.c.

References process_post(), and uip_ipaddr_copy.

6.48.2.2 u16_t∗ resolv_getserver (void)

Obtain the currently configured DNS server.

Returns:
A pointer to a 4-byte representation of the IP address of the currently configured DNS server or NULL
if no DNS server has been configured.

Definition at line 457 of file resolv.c.

References NULL, and uip_udp_conn::ripaddr.

6.48.2.3 u16_t∗ resolv_lookup (char∗ name)

Look up a hostname in the array of known hostnames.

Note:
This function only looks in the internal array of known hostnames, it does not send out a query for the
hostname if none was found. The functionresolv_query()can be used to send a query for a hostname.

Returns:
A pointer to a 4-byte representation of the hostname’s IP address, or NULL if the hostname was not
found in the array of hostnames.

Definition at line 431 of file resolv.c.

References NULL, and STATE_DONE.

6.48.2.4 void resolv_query (char∗ name)

Queues a name so that a question for the name will be sent out.

Parameters:
name The hostname that is to be queried.

Definition at line 383 of file resolv.c.

References NULL, STATE_NEW, STATE_UNUSED, and tcpip_poll_udp().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.49 Protosockets library 149

6.49 Protosockets library

6.49.1 Detailed Description

The protosocket library provides an interface to the uIP stack that is similar to the traditional BSD socket
interface.

Unlike programs written for the ordinary uIP event-driven interface, programs written with the protosocket
library are executed in a sequential fashion and does not have to be implemented as explicit state machines.

Protosockets only work with TCP connections.

The protosocket library usesProtothreadsprotothreads to provide sequential control flow. This makes
the protosockets lightweight in terms of memory, but also means that protosockets inherits the functional
limitations of protothreads. Each protosocket lives only within a single function block. Automatic variables
(stack variables) are not necessarily retained across a protosocket library function call.

Note:
Because the protosocket library uses protothreads, local variables will not always be saved across a
call to a protosocket library function. It is therefore advised that local variables are used with extreme
care.

The protosocket library provides functions for sending data without having to deal with retransmissions
and acknowledgements, as well as functions for reading data without having to deal with data being split
across more than one TCP segment.

Because each protosocket runs as a protothread, the protosocket has to be started with a call toPSOCK_-
BEGIN() at the start of the function in which the protosocket is used. Similarly, the protosocket protothread
can be terminated by a call toPSOCK_EXIT().

Files

• file psock.h

Protosocket library header file.

Data Structures

• structpsock_buf
• structpsock

The representation of a protosocket.

Defines

• #definePSOCK_INIT(psock, buffer, buffersize)

Initialize a protosocket.

• #definePSOCK_BEGIN(psock)

Start the protosocket protothread in a function.

• #definePSOCK_SEND(psock, data, datalen)

Send data.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.49 Protosockets library 150

• #definePSOCK_SEND_STR(psock, str)

Send a null-terminated string.

• #definePSOCK_GENERATOR_SEND(psock, generator, arg)

Generate data with a function and send it.

• #definePSOCK_CLOSE(psock)

Close a protosocket.

• #definePSOCK_READBUF(psock)

Read data until the buffer is full.

• #definePSOCK_READTO(psock, c)

Read data up to a specified character.

• #definePSOCK_DATALEN(psock)

The length of the data that was previously read.

• #definePSOCK_EXIT(psock)

Exit the protosocket’s protothread.

• #definePSOCK_CLOSE_EXIT(psock)

Close a protosocket and exit the protosocket’s protothread.

• #definePSOCK_END(psock)

Declare the end of a protosocket’s protothread.

• #definePSOCK_NEWDATA(psock)

Check if new data has arrived on a protosocket.

• #definePSOCK_WAIT_UNTIL(psock, condition)

Wait until a condition is true.

• #definePSOCK_WAIT_THREAD(psock, condition) PT_WAIT_THREAD(&((psock) → pt), (con-
dition))

Functions

• u16_tpsock_datalen(structpsock∗psock)
• charpsock_newdata(structpsock∗s)

6.49.2 Define Documentation

6.49.2.1 #define PSOCK_BEGIN(psock)

Start the protosocket protothread in a function.

This macro starts the protothread associated with the protosocket and must come before other protosocket
calls in the function it is used.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.49 Protosockets library 151

Parameters:
psock (struct psock∗) A pointer to the protosocket to be started.

Examples:
example-psock-server.c.

Definition at line 165 of file psock.h.

6.49.2.2 #define PSOCK_CLOSE(psock)

Close a protosocket.

This macro closes a protosocket and can only be called from within the protothread in which the protosocket
lives.

Parameters:
psock (struct psock∗) A pointer to the protosocket that is to be closed.

Examples:
example-psock-server.c.

Definition at line 242 of file psock.h.

6.49.2.3 #define PSOCK_CLOSE_EXIT(psock)

Close a protosocket and exit the protosocket’s protothread.

This macro closes a protosocket and exits the protosocket’s protothread.

Parameters:
psock (struct psock∗) A pointer to the protosocket.

Definition at line 315 of file psock.h.

6.49.2.4 #define PSOCK_DATALEN(psock)

The length of the data that was previously read.

This macro returns the length of the data that was previously read usingPSOCK_READTO()or PSOCK_-
READ().

Parameters:
psock (struct psock∗) A pointer to the protosocket holding the data.

Examples:
example-psock-server.c.

Definition at line 288 of file psock.h.

6.49.2.5 #define PSOCK_END(psock)

Declare the end of a protosocket’s protothread.

This macro is used for declaring that the protosocket’s protothread ends. It must always be used together
with a matchingPSOCK_BEGIN()macro.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.49 Protosockets library 152

Parameters:
psock (struct psock∗) A pointer to the protosocket.

Examples:
example-psock-server.c.

Definition at line 332 of file psock.h.

6.49.2.6 #define PSOCK_EXIT(psock)

Exit the protosocket’s protothread.

This macro terminates the protothread of the protosocket and should almost always be used in conjunction
with PSOCK_CLOSE().

See also:
PSOCK_CLOSE_EXIT()

Parameters:
psock (struct psock∗) A pointer to the protosocket.

Definition at line 304 of file psock.h.

6.49.2.7 #define PSOCK_GENERATOR_SEND(psock, generator, arg)

Generate data with a function and send it.

Parameters:
psock Pointer to the protosocket.

generator Pointer to the generator function

arg Argument to the generator function

This function generates data and sends it over the protosocket. This can be used to dynamically generate
data for a transmission, instead of generating the data in a buffer beforehand. This function reduces the
need for buffer memory. The generator function is implemented by the application, and a pointer to the
function is given as an argument with the call toPSOCK_GENERATOR_SEND().

The generator function should place the generated data directly in the uip_appdata buffer, and return the
length of the generated data. The generator function is called by the protosocket layer when the data first
is sent, and once for every retransmission that is needed.

Definition at line 226 of file psock.h.

6.49.2.8 #define PSOCK_INIT(psock, buffer, buffersize)

Initialize a protosocket.

This macro initializes a protosocket and must be called before the protosocket is used. The initialization
also specifies the input buffer for the protosocket.

Parameters:
psock (struct psock∗) A pointer to the protosocket to be initialized

buffer (char∗) A pointer to the input buffer for the protosocket.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.49 Protosockets library 153

buffersize (unsigned int) The size of the input buffer.

Examples:
example-psock-server.c.

Definition at line 151 of file psock.h.

6.49.2.9 #define PSOCK_NEWDATA(psock)

Check if new data has arrived on a protosocket.

This macro is used in conjunction with thePSOCK_WAIT_UNTIL()macro to check if data has arrived on
a protosocket.

Parameters:
psock (struct psock∗) A pointer to the protosocket.

Definition at line 346 of file psock.h.

6.49.2.10 #define PSOCK_READBUF(psock)

Read data until the buffer is full.

This macro will block waiting for data and read the data into the input buffer specified with the call to
PSOCK_INIT(). Data is read until the buffer is full..

Parameters:
psock (struct psock∗) A pointer to the protosocket from which data should be read.

Definition at line 257 of file psock.h.

6.49.2.11 #define PSOCK_READTO(psock, c)

Read data up to a specified character.

This macro will block waiting for data and read the data into the input buffer specified with the call to
PSOCK_INIT(). Data is only read until the specifieed character appears in the data stream.

Parameters:
psock (struct psock∗) A pointer to the protosocket from which data should be read.

c (char) The character at which to stop reading.

Examples:
example-psock-server.c.

Definition at line 275 of file psock.h.

6.49.2.12 #define PSOCK_SEND(psock, data, datalen)

Send data.

This macro sends data over a protosocket. The protosocket protothread blocks until all data has been sent
and is known to have been received by the remote end of the TCP connection.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.49 Protosockets library 154

Parameters:
psock (struct psock∗) A pointer to the protosocket over which data is to be sent.

data (char∗) A pointer to the data that is to be sent.

datalen (unsigned int) The length of the data that is to be sent.

Examples:
example-psock-server.c.

Definition at line 185 of file psock.h.

6.49.2.13 #define PSOCK_SEND_STR(psock, str)

Send a null-terminated string.

Parameters:
psock Pointer to the protosocket.

str The string to be sent.

This function sends a null-terminated string over the protosocket.

Examples:
example-psock-server.c.

Definition at line 198 of file psock.h.

6.49.2.14 #define PSOCK_WAIT_UNTIL(psock, condition)

Wait until a condition is true.

This macro blocks the protothread until the specified condition is true. The macroPSOCK_NEWDATA()
can be used to check if new data arrives when the protosocket is waiting.

Typically, this macro is used as follows:

PT_THREAD(thread(struct psock *s, struct timer *t))
{

PSOCK_BEGIN(s);

PSOCK_WAIT_UNTIL(s, PSOCK_NEWADATA(s) || timer_expired(t));

if(PSOCK_NEWDATA(s)) {
PSOCK_READTO(s, ’\n’);

} else {
handle_timed_out(s);

}

PSOCK_END(s);
}

Parameters:
psock (struct psock∗) A pointer to the protosocket.

condition The condition to wait for.

Definition at line 379 of file psock.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.50 The Contiki/uIP interface 155

6.50 The Contiki/uIP interface

6.50.1 Detailed Description

TCP/IP support in Contiki is implemented using the uIP TCP/IP stack.

For sending and receiving data, Contiki uses the functions provided by the uIP module, but Contiki adds
a set of functions for connection management. The connection management functions make sure that the
uIP TCP/IP connections are connected to the correct process.

Contiki also includes an optional protosocket library that provides an API similar to the BSD socket API.

See also:
The uIP TCP/IP stack
Protosockets library

Files

• file tcpip.h

Header for the Contiki/uIP interface.

Data Structures

• structtcpip_uipstate

Defines

• #defineUIP_APPCALLtcpip_uipcall

The name of the application function that uIP should call in response to TCP/IP events.

• #defineUIP_UDP_APPCALLtcpip_uipcall

Functions

• void tcpip_uipcall(void)

6.51 Memory block management functions

6.51.1 Detailed Description

The memory block allocation routines provide a simple yet powerful set of functions for managing a set of
memory blocks of fixed size.

A set of memory blocks is statically declared with theMEMB() macro. Memory blocks are allocated from
the declared memory by thememb_alloc()function, and are deallocated with thememb_free()function.

Note:
Because of namespace clashes only oneMEMB() can be declared per C module, and the name scope
of aMEMB() memory block is local to each C module.

The following example shows how to declare and use a memory block called "cmem" which has 8 chunks
of memory with each memory chunk being 20 bytes large.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.51 Memory block management functions 156

Files

• file memb.h

Memory block allocation routines.

• file memb.c

Memory block allocation routines.

Data Structures

• structmemb_blocks

Defines

• #defineMEMB_CONCAT2(s1, s2) s1##s2
• #defineMEMB_CONCAT(s1, s2) MEMB_CONCAT2(s1, s2)
• #defineMEMB(name, structure, num)

Declare a memory block.

Functions

• void memb_init(structmemb_blocks∗m)

Initialize a memory block that was declared withMEMB().

• void ∗ memb_alloc(structmemb_blocks∗m)

Allocate a memory block from a block of memory declared withMEMB().

• charmemb_free(structmemb_blocks∗m, void∗ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

6.51.2 Define Documentation

6.51.2.1 #define MEMB(name, structure, num)

Value:

static char MEMB_CONCAT(name,_memb_count)[num]; \
static structure MEMB_CONCAT(name,_memb_mem)[num]; \
static struct memb_blocks name = {sizeof(structure), num, \

MEMB_CONCAT(name,_memb_count), \
(void *)MEMB_CONCAT(name,_memb_mem)}

Declare a memory block.

This macro is used to staticall declare a block of memory that can be used by the block allocation functions.
The macro statically declares a C array with a size that matches the specified number of blocks and their
individual sizes.

Example:

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.51 Memory block management functions 157

MEMB(connections, sizeof(struct connection), 16);

Parameters:
name The name of the memory block (later used withmemb_init(), memb_alloc()andmemb_free()).

size The size of each memory chunk, in bytes.

num The total number of memory chunks in the block.

Definition at line 104 of file memb.h.

6.51.3 Function Documentation

6.51.3.1 void∗ memb_alloc (structmemb_blocks∗ m)

Allocate a memory block from a block of memory declared withMEMB().

Parameters:
m A memory block previosly declared withMEMB().

Definition at line 59 of file memb.c.

References memb_blocks::count, memb_blocks::mem, NULL, memb_blocks::num, and memb_-
blocks::size.

6.51.3.2 char memb_free (structmemb_blocks∗ m, void ∗ ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

Parameters:
m m A memory block previosly declared withMEMB().

ptr A pointer to the memory block that is to be deallocated.

Returns:
The new reference count for the memory block (should be 0 if successfully deallocated) or -1 if the
pointer "ptr" did not point to a legal memory block.

Definition at line 79 of file memb.c.

References memb_blocks::count, memb_blocks::mem, memb_blocks::num, and memb_blocks::size.

6.51.3.3 void memb_init (structmemb_blocks∗ m)

Initialize a memory block that was declared withMEMB().

Parameters:
m A memory block previosly declared withMEMB().

Definition at line 52 of file memb.c.

References memb_blocks::count, memb_blocks::mem, memb_blocks::num, and memb_blocks::size.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.52 Managed memory allocator 158

6.52 Managed memory allocator

6.52.1 Detailed Description

The managed memory allocator is a fragmentation-free memory manager.

It keeps the allocated memory free from fragmentation by compacting the memory when blocks are freed.
A program that uses the managed memory module cannot be sure that allocated memory stays in place.
Therefore, a level of indirection is used: access to allocated memory must always be done using a special
macro.

Note:
This module has not been heavily tested.

Files

• file mmem.h

Header file for the managed memory allocator.

• file mmem.c

Implementation of the managed memory allocator.

Data Structures

• structmmem

Defines

• #defineMMEM_PTR(m)

Get a pointer to the managed memory.

• #defineMMEM_SIZE 4096

Functions

• int mmem_alloc(structmmem∗m, unsigned int size)

Allocate a managed memory block.

• void mmem_free(structmmem∗m)

Deallocate a managed memory block.

• void mmem_init(void)

Initialize the managed memory module.

Variables

• unsigned intavail_memory

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.52 Managed memory allocator 159

6.52.2 Define Documentation

6.52.2.1 #define MMEM_PTR(m)

Get a pointer to the managed memory.

Parameters:
m A pointer to the struct mmem

Returns:
A pointer to the memory block, or NULL if memory could not be allcated.

Author:
Adam Dunkels

This macro is used to get a pointer to a memory block allocated withmmem_alloc().

Definition at line 76 of file mmem.h.

6.52.3 Function Documentation

6.52.3.1 int mmem_alloc (structmmem∗ m, unsigned intsize)

Allocate a managed memory block.

Parameters:
m A pointer to a struct mmem.

size The size of the requested memory block

Returns:
Non-zero if the memory could be allocated, zero if memory was not available.

Author:
Adam Dunkels

This function allocates a chunk of managed memory. The memory allocated with this function must be
deallocated using themmem_free()function.

Note:
This function does NOT return a pointer to the allocated memory, but a pointer to a structure that
contains information about the managed memory. The macroMMEM_PTR() is used to get a pointer
to the allocated memory.

Definition at line 80 of file mmem.c.

References avail_memory, list_add(), MMEM_SIZE, ptr, and size.

6.52.3.2 void mmem_free (structmmem∗ m)

Deallocate a managed memory block.

Parameters:
m A pointer to the managed memory block

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.53 Linked list library 160

Author:
Adam Dunkels

This function deallocates a managed memory block that previously has been allocated withmmem_alloc().

Definition at line 116 of file mmem.c.

References avail_memory, list_remove(), MMEM_SIZE, next, NULL, ptr, and size.

6.52.3.3 void mmem_init (void)

Initialize the managed memory module.

Author:
Adam Dunkels

This function initializes the managed memory module and should be called before any other function from
the module.

Definition at line 149 of file mmem.c.

References avail_memory, list_init(), and MMEM_SIZE.

6.53 Linked list library

6.53.1 Detailed Description

The linked list library provides a set of functions for manipulating linked lists.

A linked list is made up of elements where the first elementmust be a pointer. This pointer is used by the
linked list library to form lists of the elements.

Lists are declared with theLIST() macro. The declaration specifies the name of the list that later is used
with all list functions.

Lists can be manipulated by inserting or removing elements from either sides of the list (list_push(), list_-
add(), list_pop(), list_chop()). A specified element can also be removed from inside a list withlist_-
remove(). The head and tail of a list can be extracted usinglist_head()andlist_tail(), respecitively.

Files

• file list.h

Linked list manipulation routines.

• file list.c

Linked list library implementation.

Defines

• #defineLIST_CONCAT2(s1, s2) s1##s2
• #defineLIST_CONCAT(s1, s2) LIST_CONCAT2(s1, s2)
• #defineLIST(name)

Declare a linked list.

• #defineNULL 0

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.53 Linked list library 161

Typedefs

• typedef void∗∗ list_t

The linked list type.

Functions

• void list_init (list_t list)

Initialize a list.

• void ∗ list_head(list_t list)

Get a pointer to the first element of a list.

• void ∗ list_tail (list_t list)

Get the tail of a list.

• void ∗ list_pop(list_t list)

Remove the first object on a list.

• void list_push(list_t list, void ∗item)

Add an item to the start of the list.

• void ∗ list_chop(list_t list)

Remove the last object on the list.

• void list_add(list_t list, void ∗item)

Add an item at the end of a list.

• void list_remove(list_t list, void ∗item)

Remove a specific element from a list.

• int list_length(list_t list)

Get the length of a list.

• void list_copy(list_t dest,list_t src)

Duplicate a list.

• void list_insert(list_t list, void ∗previtem, void∗newitem)

Insert an item after a specified item on the list.

6.53.2 Define Documentation

6.53.2.1 #define LIST(name)

Value:

static void *LIST_CONCAT(name,_list) = NULL; \
static list_t name = (list_t)&LIST_CONCAT(name,_list)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.53 Linked list library 162

Declare a linked list.

This macro declares a linked list with the specifiedtype . The typemust be a structure (struct) with its
first element being a pointer. This pointer is used by the linked list library to form the linked lists.

Parameters:
name The name of the list.

Examples:
example-list.c.

Definition at line 85 of file list.h.

6.53.3 Function Documentation

6.53.3.1 void list_add (list_t list, void ∗ item)

Add an item at the end of a list.

This function adds an item to the end of the list.

Parameters:
list The list.

item A pointer to the item to be added.

See also:
list_push()

Examples:
example-list.c.

Definition at line 143 of file list.c.

References list_tail(), and NULL.

Referenced by mmem_alloc().

6.53.3.2 void∗ list_chop (list_t list)

Remove the last object on the list.

This function removes the last object on the list and returns it.

Parameters:
list The list

Returns:
The removed object

Definition at line 180 of file list.c.

References NULL.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.53 Linked list library 163

6.53.3.3 void list_copy (list_t dest, list_t src)

Duplicate a list.

This function duplicates a list by copying the list reference, but not the elements.

Note:
This function doesnot copy the elements of the list, but merely duplicates the pointer to the first
element of the list.

Parameters:
dest The destination list.

src The source list.

Definition at line 101 of file list.c.

6.53.3.4 void∗ list_head (list_t list)

Get a pointer to the first element of a list.

This function returns a pointer to the first element of the list. The element willnot be removed from the
list.

Parameters:
list The list.

Returns:
A pointer to the first element on the list.

See also:
list_tail()

Examples:
example-list.c.

Definition at line 83 of file list.c.

6.53.3.5 void list_init (list_t list)

Initialize a list.

This function initalizes a list. The list will be empty after this function has been called.

Parameters:
list The list to be initialized.

Examples:
example-list.c.

Definition at line 66 of file list.c.

References NULL.

Referenced by mmem_init().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.53 Linked list library 164

6.53.3.6 void list_insert (list_t list, void ∗ previtem, void ∗ newitem)

Insert an item after a specified item on the list.

Parameters:
list The list

previtem The item after which the new item should be inserted

newitem The new item that is to be inserted

Author:
Adam Dunkels

This function inserts an item right after a specified item on the list. This function is useful when using the
list module to ordered lists.

If previtem is NULL, the new item is placed at the start of the list.

Definition at line 295 of file list.c.

References list_push(), and NULL.

6.53.3.7 int list_length (list_t list)

Get the length of a list.

This function counts the number of elements on a specified list.

Parameters:
list The list.

Returns:
The length of the list.

Definition at line 267 of file list.c.

References NULL.

6.53.3.8 void∗ list_pop (list_t list)

Remove the first object on a list.

This function removes the first object on the list and returns a pointer to the list.

Parameters:
list The list.

Returns:
The new head of the list.

Definition at line 212 of file list.c.

References NULL.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.54 Table-driven Manchester encoding and decoding 165

6.53.3.9 void list_remove (list_t list, void ∗ item)

Remove a specific element from a list.

This function removes a specified element from the list.

Parameters:
list The list.

item The item that is to be removed from the list.

Definition at line 232 of file list.c.

References NULL.

Referenced by mmem_free().

6.53.3.10 void∗ list_tail (list_t list)

Get the tail of a list.

This function returns a pointer to the elements following the first element of a list. No elements are removed
by this function.

Parameters:
list The list

Returns:
A pointer to the element after the first element on the list.

See also:
list_head()

Definition at line 118 of file list.c.

References NULL.

Referenced by list_add().

6.54 Table-driven Manchester encoding and decoding

6.54.1 Detailed Description

Manchester encoding is a bit encoding scheme which translates each bit into two bits: the original bit and
the inverted bit.

Manchester encoding is used for transmitting ones and zeroes between two computers. The Manchester
encoding reduces the receive oscillator drift by making sure that no consecutive ones or zeroes are ever
transmitted.

The table driven method of Manchester encoding and decoding uses two tables with 256 entries. One table
is a direct mapping of an 8-bit byte into a 16-bit Manchester encoding of the byte. The second table is a
mapping of a Manchester encoded 8-bit byte to 4 decoded bits.

Files

• file me.h

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.54 Table-driven Manchester encoding and decoding 166

Header file for the table-driven Manchester encoding and decoding.

• file me.c

Implementation of the table-driven Manchester encoding and decoding.

Functions

• unsigned charme_valid(unsigned char m)

Check if an encoded byte is valid.

• unsigned shortme_encode(unsigned char c)

Manchester encode an 8-bit byte.

• unsigned charme_decode16(unsigned short m)

Decode a Manchester encoded 16-bit word.

• unsigned charme_decode8(unsigned char m)

Decode a Manchester encoded 8-bit byte.

6.54.2 Function Documentation

6.54.2.1 unsigned char me_decode16 (unsigned shortm)

Decode a Manchester encoded 16-bit word.

This function decodes a Manchester encoded 16-bit word into a 8-bit byte. The function does not check
for parity errors in the encoded byte.

Parameters:
m The 16-bit Manchester encoded word

Returns:
The decoded 8-bit byte

Definition at line 76 of file me.c.

6.54.2.2 unsigned char me_decode8 (unsigned charm)

Decode a Manchester encoded 8-bit byte.

This function decodes a Manchester encoded 8-bit byte into 4 decoded bits.. The function does not check
for parity errors in the encoded byte.

Parameters:
m The 8-bit Manchester encoded byte

Returns:
The decoded 4 bits

Definition at line 100 of file me.c.

Referenced by PT_THREAD().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.55 Cyclic Redundancy Check 16 (CRC16) calculcation 167

6.54.2.3 unsigned short me_encode (unsigned charc)

Manchester encode an 8-bit byte.

This function Manchester encodes an 8-bit byte into a 16-bit word. The function me_decode() does the
inverse operation.

Parameters:
c The byte to be encoded

Return values:
The encoded word.

Definition at line 59 of file me.c.

6.55 Cyclic Redundancy Check 16 (CRC16) calculcation

6.55.1 Detailed Description

The Cyclic Redundancy Check 16 is a hash function that produces a checksum that is used to detect errors
in transmissions.

The CRC16 calculation module is an iterative CRC calculator that can be used to cummulatively update a
CRC checksum for every incoming byte.

Files

• file crc16.h

Header file for the CRC16 calculcation.

• file crc16.c

Implementation of the CRC16 calculcation.

Functions

• unsigned shortcrc16_add(unsigned char b, unsigned short crc)

Update an accumulated CRC16 checksum with one byte.

6.55.2 Function Documentation

6.55.2.1 unsigned short crc16_add (unsigned charb, unsigned shortcrc)

Update an accumulated CRC16 checksum with one byte.

Parameters:
b The byte to be added to the checksum

crc The accumulated CRC that is to be updated.

Returns:
The updated CRC checksum.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.56 The ESB Embedded Sensor Board 168

This function updates an accumulated CRC16 checksum with one byte. It can be used as a running check-
sum, or to checksum an entire data block.

Note:
The algorithm used in this implementation is tailored for a running checksum and does not perform as
well as a table-driven algorithm when checksumming an entire data block.

Definition at line 48 of file crc16.c.

Referenced by PT_THREAD().

6.56 The ESB Embedded Sensor Board

6.56.1 Detailed Description

The ESB (Embedded Sensor Board) is a prototype wireless sensor network device developed at Freie
Universität Berlin.

The ESB consists of a Texas Instruments MSP430 low-power microcontroller with 2k RAM and 60k flash
ROM, a TR1001 radio transceiver, a 32k serial EEPROM, an RS232 port, a JTAG port, a beeper, and a
number of sensors (passive IR, active IR sender/receiver, vibration/tilt, microphone, temperature).

The Contiki/ESB port contains drivers for most of the sensors. The drivers were mostly adapted from
sources from FU Berlin.

Modules

• Introduction to Over The Air Reprogramming under Windows
• Introduction to Contiki development under Microsoft Windows
• Beeper interface
• ESB RS232
• TR1001 radio tranciever device driver

6.57 Introduction to Over The Air Reprogramming under Windows

Author:
Joakim Eriksson, Niclas Finne

6.57.1 Introduction

This is a brief introduction how to program ESB sensor nodes over radio under Windows. It is assumed
that you already have the environment setup for programming ESB sensor nodes using JTAG cable.

6.57.2 Configuring SLIP under Windows XP

This section describes how to setup a SLIP connection under Windows. A SLIP connection forwards
TCP/IP traffic to/from the sensor nodes and lets you communicate with them using standard network tools
such asping .

1. Click start button and choose ’My Computer’. Right-click ’My Network Places’ and choose ’Prop-
erties’.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.57 Introduction to Over The Air Reprogramming under Windows 169

2. Click ’Create a new connection’.

3. Select ’Set up an advanced connection’.

4. Select ’Connect directly to another computer’.

5. Select ’Guest’.

6. Select a name for the slip connection (for example ’ESB’).

7. Select the serial port to use when communicating with the sensor node.

8. Add the connection by clicking ’Finish’.

9. A connection window will open. Choose ’Properties’.

10. Click on ’Configure...’ and deselect all selected buttons. Choose the speed 57600 bps.

11. Close the modem configuration window, and go to the ’Options’ tab in the ESB properties. Deselect
all except ’Display progress...’.

12. Go to the ’Networking’ tab. Change to ’SLIP: Unix Connection’ and deselect all except the first two
items in the connection item list.

13. Select ’Internet Protocol (TCP/IP)’ and click ’Properties’. Enter the IP address ’172.16.0.1’.

14. Click ’Advanced’ and deselect all checkboxes in the ’Advanced TCP/IP Settings’. Go to the ’WINS’
tab and deselect ’Enable LMHOSTS lookup’ if it is selected. Also select ’Disable NetBIOS over
TCP/IP’.

6.57.3 Setup ESB for over the air programming

1. Make sure you have the latest contiki, contiki-msp430, and contiki-esb (older versions of contiki
might not work with SLIP under Windows)

2. Install the contiki kernel by running

make core.u

3. Attach the ESB node to the serial port and make sure it is turned on. Select your ESB SLIP con-
nection in your ’Network Connections’ and choose ’Connect’ (or double click on it). If everything
works Windows should say that you have a new connection.

4. Set the IP address for the node by pinging it (it will claim the IP address of the first ping it hears).
Note that the slip interface has IP address 172.16.0.1 but the node will have the IP address 172.16.1.1.

ping 172.16.1.1

If everything works the node should click and reply to the pings.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.58 Introduction to Contiki development under Microsoft Windows 170

6.57.4 Send programs over the air

Contiki applications to be installed via radio are compiled somewhat different compared to normal appli-
cations.

Each node needs an IP address for OTA to work. A node id can be specified when you upload the contiki
kernel to a node and this is used to construct an IP address for the node. If you specify 2 as node id, the
node will have the IP address 172.16.1.2. Each node should have its own unique node id.

You need to compile a core and upload it onto the nodes. All nodes must run the same core. Move to the
directory ’contiki-esb’ and run

make
make core.u nodeid=X

to upload the core to your nodes. Use the number 1, 2, 3, etc, as the node id (X) for the nodes. This will
give the nodes the IP addresses 172.16.1.1, 172.16.1.2, etc.

Then you need a program to send the application to connected nodes. Compile it by running

make send

Make sure you have a node with IP address 172.16.1.1 connected to your serial port and have SLIP acti-
vated. Then compile and send a testprogram by running

make beeper.ce
./send 172.16.1.1 beeper.ce

6.58 Introduction to Contiki development under Microsoft Windows

Author:
Joakim Eriksson, Niclas Finne

6.58.1 Introduction

This is a brief introduction to Contik/ESB programming under Windows using cygwin and some other free
software tools.

6.58.2 Installing the development environment

This sections describes how to install all the necessary software to get started with ESB programming.

6.58.2.1 Cygwin - a Linux-like environment for Windows The first "need to have" software is the
cygwin environment that can be found athttp://www.cygwin.com. Click on the icon "Install Cyg-
win Now" to the right to get the installation started.

Choose "Install from Internet" and then specify where you want to install cygwin (recommended instal-
lation path:C:$ $cygwin). Continue with the installation until you are asked to select packages. Most
packages can be left as "Default" but there is one package that are not installed by default. Install the
following package by clicking at "Default" until it changes to "Install":

• Devel - contains things for developers (make, etc).

When cygwin is installed there should be a cygwin icon that starts up a cygwin bash when clicked on.
Whenever it is time to compile and send programs to the ESB nodes it will be done from a cygwin shell.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

http://www.cygwin.com.

6.58 Introduction to Contiki development under Microsoft Windows 171

6.58.2.2 C programming editor If you do not already have a nice programming editor it is a good idea
to download and install one. The Crimson editor is a nice windows based editor that is both easy to get
started with and fairly powerful.

Crimson Editor can be found at:http://www.crimsoneditor.com/

The editor is useful both when editing C programs and when modifying scripts and configuration files.

6.58.2.3 MSP430 Compiler and tools} The MSP430 compiler (a version of gcc) is needed to compile
the programs to the MSP430 microprocessor that is used on the ESB sensor nodes. We have made a
webpage which describe how to get the compilers and other tools for programming the ESB nodes, see:
http://www.sics.se/sensornets/esblab/

Download and install the GCC toolchain for MSP430 (recommended installation path: C:$$MSP430$$):
mspgcc-20041112 .exe.

You will also need some tools for sending the compiled programs over to the ESB nodes. In-
stall the IAR Embedded Workbench (Kickstart Version) package (recommended installation path:
C:$$MSP430$$IARSystems):fet_r304.exe .

When the above software is installed you also need to set-up the PATH so that all of the necessary tools
can be reached. In cygwin this is done by the following line (given that you have installed at recommended
locations):

export PATH=$PATH:/cygdrive/c/MSP430/IARSystems/ew23:
/cygdrive/c/MSP430/IARSystems/ew23/430/bin:/cygdrive/c/MSP430/mspgcc/bin

This line can also be added to the .profile startup file in your cygwin home directory
(C:$$cygwin$$home$$ <YOUR username>="" >$$.profile).

If your home directory is located elsewhere you can find it by starting cygwin and runningcd followed by
pwd.

6.58.2.4 The Contiki operating system, including examples and labsWhen programming the ESB
sensor nodes it is very useful to have an operating system that takes care of some of the low-level tasks
and also gives you as a programmer APIs for things like events, hardware and networking. We will use the
Contiki operating system developed by Adam Dunkels, SICS, which is very well suited when programming
small embedded systems.

Download Contiki for ESB nodes from the same page as before (Contiki ESB).

Unzip the Contiki OS at (for example) C:$$ and you will get the following directories:

• esblab/contiki - the contiki operating system

• esblab/contiki-esb - the contiki operating system drivers, etc for the ESB

• esblab/contiki-esb/labs - the example and lab files

6.58.3 Testing the tools

Now everything necessary to start developing Contiki-based sensor net applications should be installed.
Start cygwin and change to the directorylabs/intro . Then callmake esbintro .

If you get an error about multiple cygwin dlls when compiling, you need to deletecygwin1.dll from
the MSP430 GCC toolchain (C:$ $MSP430$$bin$$cygwin1.dll).

Connect a node and turn it on. Upload the test application by callingmake esbintro.u.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

http://www.crimsoneditor.com/
http://www.sics.se/sensornets/esblab/

6.59 Beeper interface 172

6.58.3.1 Development tools

• make <SPEC> will compile and make a executable file ready for sending to the ESB nodes. De-
pending on the SPEC it might even startup the application that sends the executable to the node.
During this course you would typically write things like"make esbintro.u" to get the file
esbintro.c compiled, linked and sent out to the ESB node

• cw23 starts up the CSPY program that sends programs to the ESB nodes and allow debugging (usu-
ally started by themake

6.58.3.2 Some basic shell commands

• cd <DIR> change to a specified directory (same as in DOS)

• pwd <DIR> shows your current directory

• ls list the directory

• mkdir <DIR> creates a new directory

• cp <SRC> <DEST> copies a file

6.58.3.3 winintro-testing-excercises compile and start theesbintro application (remember to
change directory to contiki-esb before you runmake) modify the C code and make the yellow led be
on when the red is off (and vice versa). The code is in thecontiki-esb/labs/intro folder. Hint:
Add another line controlling the yellow led in the section:

if (timer_expired(&timer)) {
timer_reset(&timer);
leds_red(on ? LEDS_ON : LEDS_OFF);
on = !on;

}

6.59 Beeper interface

Files

• file beep.h

Interface to the beeper.

Defines

• #defineBEEP_ON1
• #defineBEEP_OFF0
• #defineBEEP_ALARM11
• #defineBEEP_ALARM22

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.59 Beeper interface 173

Functions

• void beep_beep(int len)

Beep for a specified time.

• void beep_alarm(int alarmmode, int len)

Beep an alarm for a specified time.

• void beep(void)

Produces a quick click-like beep.

• void beep_down(int len)

A beep with a pitch-bend down.

• void beep_on(void)

Turn the beeper on.

• void beep_off(void)

Turn the beeper off.

• void beep_spinup(void)

Produce a sound similar to a hard-drive spinup.

• void beep_long(clock_time_t len)

Beep for a long time (seconds).

6.59.1 Function Documentation

6.59.1.1 void beep (void)

Produces a quick click-like beep.

This function produces a short beep that sounds like a click.

6.59.1.2 void beep_alarm (intalarmmode, int len)

Beep an alarm for a specified time.

This function causes the beeper to beep for the specified time. The time is measured in the same units as
for the clock_delay() function.

Note:
This function will hang the CPU during the beep.
This function will stop any beep that was on previously when this function ends.
If the beeper is turned off withbeep_off()this call will still take the same time, though it will be silent.

Parameters:
alarmmode The alarm mode (BEEP_ALARM1,BEEP_ALARM2)

len The length of the beep.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.59 Beeper interface 174

6.59.1.3 void beep_beep (intlen)

Beep for a specified time.

This function causes the beeper to beep for the specified time. The time is measured in the same units as
for the clock_delay() function.

Note:
This function will hang the CPU during the beep.
This function will stop any beep that was on previously when this function ends.
If the beeper is turned off withbeep_off()this call will still take the same time, though it will be silent.

Parameters:
len The length of the beep.

Referenced by PT_THREAD().

6.59.1.4 void beep_down (intlen)

A beep with a pitch-bend down.

This function produces a pitch-bend sound with deecreasing frequency.

Parameters:
len The length of the pitch-bend.

6.59.1.5 void beep_long (clock_time_tlen)

Beep for a long time (seconds).

This function produces a beep with the specified length and will not return until the beep is complete. The
length of the beep is specified using CLOCK_SECOND: a two second beep is CLOCK_SECOND∗ 2, and
a quarter second beep is CLOCK_SECOND / 4.

Note:
If the beeper is turned off withbeep_off()this call will still take the same time, though it will be silent.

Parameters:
len The length of the beep, measured in units of CLOCK_SECOND

6.59.1.6 void beep_off (void)

Turn the beeper off.

This function turns the beeper off after it has been turned on withbeep_on().

6.59.1.7 void beep_on (void)

Turn the beeper on.

This function turns on the beeper. The beeper is turned off with thebeep_off()function.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.60 ESB RS232 175

6.59.1.8 void beep_spinup (void)

Produce a sound similar to a hard-drive spinup.

This function produces a sound that is intended to be similar to the sound a hard-drive makes when it starts.

6.60 ESB RS232

Files

• file rs232.h

Header file for MSP430 RS232 driver.

• file rs232.c

RS232 communication device driver for the MSP430.

Defines

• #defineRS232_192001
• #defineRS232_384002
• #defineRS232_576003
• #defineRS232_1152004

Functions

• void rs232_init(void)

Initialize the RS232 module.

• void rs232_set_input(int(∗f)(unsigned char))

Set an input handler for incoming RS232 data.

• void rs232_set_speed(unsigned char speed)

Configure the speed of the RS232 hardware.

• void rs232_print(char∗text)

Print a text string on RS232.

• void rs232_send(char c)

Print a character on RS232.

• interrupt(UART1RX_VECTOR)
• void slip_arch_writeb(unsigned char c)

6.60.1 Function Documentation

6.60.1.1 void rs232_init (void)

Initialize the RS232 module.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.60 ESB RS232 176

This function is called from the boot up code to initalize the RS232 module.

Definition at line 76 of file rs232.c.

References NULL, RS232_57600, and rs232_set_speed().

6.60.1.2 void rs232_print (char∗ text)

Print a text string on RS232.

Parameters:
str A pointer to the string that is to be printed

This function prints a string to RS232. The string must be terminated by a null byte. The RS232 module
must be correctly initalized and configured for this function to work.

Definition at line 129 of file rs232.c.

References rs232_send().

6.60.1.3 void rs232_send (charc)

Print a character on RS232.

Parameters:
c The character to be printed

This function prints a character to RS232. The RS232 module must be correctly initalized and configured
for this function to work.

Definition at line 92 of file rs232.c.

Referenced by rs232_print(), and slip_arch_writeb().

6.60.1.4 void rs232_set_input (int(∗)(unsigned char)f)

Set an input handler for incoming RS232 data.

Parameters:
f A pointer to a byte input handler

This function sets the input handler for incoming RS232 data. The input handler function is called for
every incoming data byte. The function is called from the RS232 interrupt handler, so care must be taken
when implementing the input handler to avoid race conditions.

The return value of the input handler affects the sleep mode of the CPU: if the input handler returns non-
zero (true), the CPU is awakened to let other processing take place. If the input handler returns zero, the
CPU is kept sleeping.

Definition at line 138 of file rs232.c.

6.60.1.5 void rs232_set_speed (unsigned charspeed)

Configure the speed of the RS232 hardware.

Parameters:
speedThe speed

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.61 TR1001 radio tranciever device driver 177

This function configures the speed of the RS232 hardware. The allowed parameters are RS232_19200,
RS232_38400, RS232_57600, and RS232_115200.

Definition at line 102 of file rs232.c.

References RS232_115200, RS232_19200, RS232_38400, and RS232_57600.

Referenced by rs232_init().

6.61 TR1001 radio tranciever device driver

Files

• file tr1001.c

Device driver and packet framing for the RFM-TR1001 radio module.

Defines

• #defineRXSTATE_READY0
• #defineRXSTATE_RECEVING1
• #defineRXSTATE_FULL2
• #defineSYNCH10x3c
• #defineSYNCH20x03
• #defineRXBUFSIZEUIP_BUFSIZE
• #defineTR1001_HDRLENsizeof(struct tr1001_hdr)
• #defineBUF ((uip_tcpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineOFF0
• #defineON 1
• #defineNUM_SYNCHBYTES4
• #defineLOG()
• #definePACKET_DROPPED(bytes)
• #definePACKET_ACCEPTED()

Functions

• void radio_off(void)

Turn radio off.

• void radio_on(void)

Turn radio on.

• void tr1001_set_txpower(unsigned char p)
• void tr1001_init(void)
• interrupt(UART0RX_VECTOR)
• PT_THREAD(tr1001_default_rxhandler_pt(unsigned char incoming_byte))
• u8_ttr1001_send(u8_t∗packet, u16_t len)
• unsigned shorttr1001_poll(void)
• void tr1001_set_speed(unsigned char speed)
• unsigned shorttr1001_sstrength(void)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

6.62 Uiparch 178

Variables

• unsigned chartr1001_rxbuf[RXBUFSIZE]
• volatile unsigned chartr1001_rxstate= RXSTATE_READY

6.61.1 Function Documentation

6.61.1.1 void radio_off (void)

Turn radio off.

This function turns the radio hardware off.

Definition at line 211 of file tr1001.c.

References OFF.

6.61.1.2 void radio_on (void)

Turn radio on.

This function turns the radio hardware on.

Definition at line 223 of file tr1001.c.

References ON.

Referenced by tr1001_init().

6.62 Uiparch

Variables

• u8_tuip_acc32[4]

4-byte array used for the 32-bit sequence number calculations.

7 Contiki 2.x Directory Documentation

7.1 apps/ Directory Reference

Directories

• directoryprogram-handler

7.2 core/cfs/ Directory Reference

Files

• file cfs.h

CFS header file.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

7.3 core/ Directory Reference 179

7.3 core/ Directory Reference

Directories

• directorycfs
• directoryctk
• directorydev
• directorylib
• directoryloader
• directorynet
• directorysys

7.4 core/ctk/ Directory Reference

Files

• file ctk-draw.h

CTK screen drawing module interface, ctk-draw.

• file ctk.c

The Contiki Toolkit CTK, the Contiki GUI.

• file ctk.h

CTK header file.

7.5 platform/esb/dev/ Directory Reference

Files

• file beep.h

Interface to the beeper.

• file eeprom.c

EEPROM functions.

• file rs232.c

RS232 communication device driver for the MSP430.

• file rs232.h

Header file for MSP430 RS232 driver.

• file tr1001.c

Device driver and packet framing for the RFM-TR1001 radio module.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

7.6 core/dev/ Directory Reference 180

7.6 core/dev/ Directory Reference

Files

• file eeprom.h

EEPROM functions.

• file radio.h

Header file for the radio API.

7.7 platform/esb/ Directory Reference

Directories

• directorydev

7.8 core/lib/ Directory Reference

Files

• file crc16.c

Implementation of the CRC16 calculcation.

• file crc16.h

Header file for the CRC16 calculcation.

• file ctk-textedit.c

An experimental CTK text edit widget.

• file ctk-textedit.h

Header file for the experimental application level CTK textedit widget.

• file list.c

Linked list library implementation.

• file list.h

Linked list manipulation routines.

• file me.c

Implementation of the table-driven Manchester encoding and decoding.

• file me.h

Header file for the table-driven Manchester encoding and decoding.

• file memb.c

Memory block allocation routines.

• file memb.h

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

7.9 core/loader/ Directory Reference 181

Memory block allocation routines.

• file mmem.c

Implementation of the managed memory allocator.

• file mmem.h

Header file for the managed memory allocator.

• file petsciiconv.h

PETSCII/ASCII conversion functions.

7.9 core/loader/ Directory Reference

Files

• file elfloader-arch.h

Header file for the architecture specific parts of the Contiki ELF loader.

• file elfloader-tmp.h

Header file for the Contiki ELF loader.

7.10 core/net/ Directory Reference

Files

• file psock.c
• file psock.h

Protosocket library header file.

• file resolv.c

DNS host name to IP address resolver.

• file resolv.h

uIP DNS resolver code header file.

• file tcpip.c
• file tcpip.h

Header for the Contiki/uIP interface.

• file uip-fw.c

uIP packet forwarding.

• file uip-fw.h

uIP packet forwarding header file.

• file uip-split.c
• file uip-split.h

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

7.11 platform/ Directory Reference 182

Module for splitting outbound TCP segments in two to avoid the delayed ACK throughput degradation.

• file uip.c

The uIP TCP/IP stack code.

• file uip.h

Header file for the uIP TCP/IP stack.

• file uip_arp.c

Implementation of the ARP Address Resolution Protocol.

• file uip_arp.h

Macros and definitions for the ARP module.

• file uiplib.c
• file uiplib.h

Various uIP library functions.

• file uipopt.h

Configuration options for uIP.

7.11 platform/ Directory Reference

Directories

• directoryesb

7.12 apps/program-handler/ Directory Reference

Files

• file program-handler.c

The program handler, used for loading programs and starting the screensaver.

7.13 core/sys/ Directory Reference

Files

• file arg.c

Argument buffer for passing arguments when starting processes.

• file cc.h

Default definitions of C compiler quirk work-arounds.

• file clock.h
• file dsc.h

Declaration of the DSC program description structure.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

7.13 core/sys/ Directory Reference 183

• file etimer.c

Event timer library implementation.

• file etimer.h

Event timer header file.

• file lc-addrlabels.h

Implementation of local continuations based on the "Labels as values" feature of gcc.

• file lc-switch.h

Implementation of local continuations based on switch() statment.

• file lc.h

Local continuations.

• file loader.h

Default definitions and error values for the Contiki program loader.

• file mt.c

Implementation of the archtecture agnostic parts of the preemptive multithreading library for Contiki.

• file mt.h

Header file for the preemptive multitasking library for Contiki.

• file process.c

Implementation of the Contiki process kernel.

• file process.h

Header file for the Contiki process interface.

• file procinit.c
• file procinit.h
• file pt-sem.h

Counting semaphores implemented on protothreads.

• file pt.h

Protothreads implementation.

• file service.c

Implementation of the Contiki service mechanism.

• file service.h

Header file for the Contiki service mechanism.

• file timer.c

Timer library implementation.

• file timer.h

Timer library header file.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8 Contiki 2.x Data Structure Documentation 184

8 Contiki 2.x Data Structure Documentation

8.1 ctk_bitmap Struct Reference

8.1.1 Detailed Description

Definition at line 335 of file ctk.h.

Data Fields

• ctk_widget∗ next
• ctk_window∗ window
• unsigned charx
• unsigned chary
• unsigned chartype
• unsigned charw
• unsigned charh
• unsigned char∗ bitmap
• unsigned shortbw
• unsigned shortbh

8.2 ctk_button Struct Reference

8.2.1 Detailed Description

Definition at line 143 of file ctk.h.

Data Fields

• ctk_widget∗ next
• ctk_window∗ window
• unsigned charx
• unsigned chary
• unsigned chartype
• unsigned charw
• unsigned charh
• char∗ text

8.3 ctk_desktop Struct Reference

8.3.1 Detailed Description

Definition at line 612 of file ctk.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.4 ctk_hyperlink Struct Reference 185

Data Fields

• char∗ name

The name of the desktop.

• ctk_windowdesktop_window

The background window which contains tha desktop icons.

• ctk_window∗ windows

The list of open windows.

• ctk_window∗ dialog

A pointer to the open dialog, or NULL if no dialog is open.

• unsigned charheight

The height of the desktop, in characters.

• unsigned charwidth

The width of the desktop, in characters.

• unsigned charredraw

The redraw flag.

• ctk_widget∗ redraw_widgets[CTK_CONF_MAX_REDRAWWIDGETS]

The list of widgets to be redrawn.

• unsigned charredraw_widgetptr

Pointer to the last widget on the redraw_widgets list.

• ctk_window∗ redraw_windows[CTK_CONF_MAX_REDRAWWINDOWS]

The list of windows to be redrawn.

• unsigned charredraw_windowptr

Pointer to the last window on the redraw_windows list.

• unsigned charredraw_y1

The lower y bound of the area to be redrawn if CTK_REDRAW_PART is flagged.

• unsigned charredraw_y2

The upper y bound of the area to be redrawn if CTK_REDRAW_PART is flagged.

8.4 ctk_hyperlink Struct Reference

8.4.1 Detailed Description

Definition at line 205 of file ctk.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.5 ctk_icon Struct Reference 186

Data Fields

• ctk_widget∗ next
• ctk_window∗ window
• unsigned charx
• unsigned chary
• unsigned chartype
• unsigned charw
• unsigned charh
• char∗ text
• char∗ url

8.5 ctk_icon Struct Reference

8.5.1 Detailed Description

Definition at line 317 of file ctk.h.

Data Fields

• ctk_widget∗ next
• ctk_window∗ window
• unsigned charx
• unsigned chary
• unsigned chartype
• unsigned charw
• unsigned charh
• char∗ title
• process∗ owner
• unsigned char∗ bitmap
• char∗ textmap

8.6 ctk_label Struct Reference

8.6.1 Detailed Description

Definition at line 174 of file ctk.h.

Data Fields

• ctk_widget∗ next
• ctk_window∗ window
• unsigned charx
• unsigned chary
• unsigned chartype
• unsigned charw
• unsigned charh
• char∗ text

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.7 ctk_menu Struct Reference 187

8.7 ctk_menu Struct Reference

#include <ctk.h >

8.7.1 Detailed Description

Representation of an individual menu.

Definition at line 567 of file ctk.h.

Data Fields

• ctk_menu∗ next

Apointer to the next menu, or is NULL if this is the last menu, and should be used by the ctk-draw module
when stepping through the menus when drawing them on screen.

• char∗ title

The menu title.

• unsigned chartitlelen

The length of the title in characters.

• unsigned charnitems

The total number of menu items in the menu.

• unsigned charactive

The currently active menu item.

• ctk_menuitemitems[CTK_MAXMENUITEMS]

The array which contains all the menu items.

8.7.2 Field Documentation

8.7.2.1 unsigned charctk_menu::titlelen

The length of the title in characters.

Cached for speed reasons.

Definition at line 574 of file ctk.h.

Referenced by PROCESS_THREAD().

8.8 ctk_menuitem Struct Reference

#include <ctk.h >

8.8.1 Detailed Description

Representation of an individual menu item.

Definition at line 552 of file ctk.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.9 ctk_menus Struct Reference 188

Data Fields

• char∗ title

The menu items text.

• unsigned chartitlelen

The length of the item text, cached for speed.

8.9 ctk_menus Struct Reference

#include <ctk.h >

8.9.1 Detailed Description

Representation of the menu bar.

Definition at line 592 of file ctk.h.

Data Fields

• ctk_menu∗ menus

A pointer to a linked list of all menus, including the open menu and the desktop menu.

• ctk_menu∗ open

The currently open menu, if any.

• ctk_menu∗ desktopmenu

A pointer to the "Desktop" menu that can be used for drawing the desktop menu in a special way (such as
drawing it at the rightmost position).

8.9.2 Field Documentation

8.9.2.1 structctk_menu∗ ctk_menus::open

The currently open menu, if any.

If all menus are closed, this item is NULL:

Definition at line 596 of file ctk.h.

Referenced by ctk_window_redraw(), and PROCESS_THREAD().

8.10 ctk_separator Struct Reference

8.10.1 Detailed Description

Definition at line 114 of file ctk.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.11 ctk_textedit Struct Reference 189

Data Fields

• ctk_widget∗ next
• ctk_window∗ window
• unsigned charx
• unsigned chary
• unsigned chartype
• unsigned charw
• unsigned charh

8.11 ctk_textedit Struct Reference

8.11.1 Detailed Description

Definition at line 59 of file ctk-textedit.h.

Data Fields

• ctk_labellabel
• unsigned charxpos
• unsigned charypos

8.12 ctk_textentry Struct Reference

8.12.1 Detailed Description

Definition at line 271 of file ctk.h.

Data Fields

• ctk_widget∗ next
• ctk_window∗ window
• unsigned charx
• unsigned chary
• unsigned chartype
• unsigned charw
• unsigned charh
• char∗ text
• unsigned charlen
• unsigned charstate
• unsigned charxpos
• unsigned charypos
• ctk_textentry_inputinput

8.13 ctk_textmap Struct Reference

8.13.1 Detailed Description

Definition at line 353 of file ctk.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.14 ctk_widget Struct Reference 190

Data Fields

• ctk_widget∗ next
• ctk_window∗ window
• unsigned charx
• unsigned chary
• unsigned chartype
• unsigned charw
• unsigned charh
• char∗ textmap
• unsigned charstate

8.14 ctk_widget Struct Reference

#include <ctk.h >

8.14.1 Detailed Description

The generic CTK widget structure that contains all other widget structures.

Since the widgets of a window are arranged on a linked list, the widget structure contains a next pointer
which is used for this purpose. The widget structure also contains the placement and the size of the widget.

Finally, the actual per-widget structure is contained in this top-level widget structure.

Definition at line 427 of file ctk.h.

Data Fields

• ctk_widget∗ next

The next widget in the linked list of widgets that is contained in thectk_windowstructure.

• ctk_window∗ window

The window in which the widget is contained.

• unsigned charx

The x position of the widget within the containing window, in character coordinates.

• unsigned chary

The y position of the widget within the containing window, in character coordinates.

• unsigned chartype

The type of the widget: CTK_WIDGET_SEPARATOR, CTK_WIDGET_LABEL, CTK_WIDGET_-
BUTTON, CTK_WIDGET_HYPERLINK, CTK_WIDGET_TEXTENTRY, CTK_WIDGET_BITMAP or
CTK_WIDGET_ICON.

• unsigned charw

The width of the widget in character coordinates.

• unsigned charh

The height of the widget in character coordinates.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.15 ctk_widget_bitmap Struct Reference 191

• union {
ctk_widget_labellabel
ctk_widget_buttonbutton
ctk_widget_hyperlinkhyperlink
ctk_widget_textentrytextentry
ctk_widget_iconicon
ctk_widget_bitmapbitmap

} widget

The union which contains the actual widget structure, as determined by the type field.

8.15 ctk_widget_bitmap Struct Reference

8.15.1 Detailed Description

Definition at line 404 of file ctk.h.

Data Fields

• unsigned char∗ bitmap
• unsigned shortbw
• unsigned shortbh

8.16 ctk_widget_button Struct Reference

8.16.1 Detailed Description

Definition at line 370 of file ctk.h.

Data Fields

• char∗ text

The button text.

8.17 ctk_widget_hyperlink Struct Reference

8.17.1 Detailed Description

Definition at line 384 of file ctk.h.

Data Fields

• char∗ text

The text of the hyperlink.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.18 ctk_widget_icon Struct Reference 192

• char∗ url

The hyperlink’s URL.

8.18 ctk_widget_icon Struct Reference

8.18.1 Detailed Description

Definition at line 397 of file ctk.h.

Data Fields

• char∗ title
• process∗ owner
• unsigned char∗ bitmap
• char∗ textmap

8.19 ctk_widget_label Struct Reference

8.19.1 Detailed Description

Definition at line 377 of file ctk.h.

Data Fields

• char∗ text

The label text.

8.20 ctk_widget_textentry Struct Reference

8.20.1 Detailed Description

Definition at line 389 of file ctk.h.

Data Fields

• char∗ text
• unsigned charlen
• unsigned charstate
• unsigned charxpos
• unsigned charypos
• ctk_textentry_inputinput

8.21 ctk_window Struct Reference

#include <ctk.h >

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.21 ctk_window Struct Reference 193

8.21.1 Detailed Description

Representation of a CTK window.

For the CTK, each window is repessented by a ctk_window structure. All open windows are kept on a
doubly linked list, linked by the next and prev fields in the ctk_window struct. The window structure holds
all widgets that is contained in the window as well as a pointer to the currently selected widget.

Definition at line 489 of file ctk.h.

Data Fields

• ctk_window∗ next

The next window in the doubly linked list of open windows.

• ctk_window∗ prev

The previous window in the doubly linked list of open windows.

• ctk_desktop∗ desktop

The desktop on which this window is open.

• process∗ owner

The process that owns the window.

• char∗ title

The title of the window.

• unsigned chartitlelen

The length of the title, cached for speed reasons.

• ctk_labelclosebutton
• ctk_labeltitlebutton
• unsigned charx

The x coordinate of the window, in characters.

• unsigned chary

The y coordinate of the window, in characters.

• unsigned charw

The width of the window, excluding window borders.

• unsigned charh

The height of the window, excluding window borders.

• ctk_widget∗ inactive

The list if widgets that cannot be selected by the user.

• ctk_widget∗ active

The list of widgets that can be selected by the user.

• ctk_widget∗ focused

A pointer to the widget on the active list that is currently selected, or NULL if no widget is selected.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.22 dsc Struct Reference 194

8.21.2 Field Documentation

8.21.2.1 structctk_widget∗ ctk_window::active

The list of widgets that can be selected by the user.

Buttons, hyperlinks, text entry fields, etc., are placed on this list.

Definition at line 539 of file ctk.h.

Referenced by ctk_window_clear(), and PROCESS_THREAD().

8.21.2.2 structctk_widget∗ ctk_window::inactive

The list if widgets that cannot be selected by the user.

Labels and separator widgets are placed on this list.

Definition at line 535 of file ctk.h.

Referenced by ctk_window_clear().

8.21.2.3 structprocess∗ ctk_window::owner

The process that owns the window.

This process will be the receiver of all CTK signals that pertain to this window.

Definition at line 498 of file ctk.h.

Referenced by PROCESS_THREAD().

8.21.2.4 char∗ ctk_window::title

The title of the window.

Used for constructing the "Dekstop" menu.

Definition at line 503 of file ctk.h.

8.22 dsc Struct Reference

#include <dsc.h >

8.22.1 Detailed Description

The DSC program description structure.

The DSC structure is used for describing a Contiki program. It includes a short textual description of the
program, either the name of the program on disk, or a pointer to the init() function, and an icon for the
program.

Definition at line 75 of file dsc.h.

Data Fields

• char∗ description

A text string containing a one-line description of the program.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.23 elf32_rela Struct Reference 195

• char∗ prgname

The name of the program on disk.

• ctk_icon∗ icon

A pointer to thectk_iconstructure for the DSC.

• void ∗ loadaddr

The loading address of the DSC.

8.22.2 Field Documentation

8.22.2.1 void∗ dsc::loadaddr

The loading address of the DSC.

Used by theLOADER_UNLOAD() function when deallocating the memory allocated for the DSC when
loading it.

Definition at line 89 of file dsc.h.

8.23 elf32_rela Struct Reference

8.23.1 Detailed Description

Definition at line 160 of file elfloader-tmp.h.

Data Fields

• elf32_addrr_offset
• elf32_wordr_info
• elf32_swordr_addend

8.24 etimer Struct Reference

#include <etimer.h >

8.24.1 Detailed Description

A timer.

This structure is used for declaring a timer. The timer must be set withetimer_set()before it can be used.

Examples:
example-program.c, example-service.c, andexample-use-service.c.

Definition at line 77 of file etimer.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.25 memb_blocks Struct Reference 196

Data Fields

• timer timer
• etimer∗ next
• process∗ p

8.25 memb_blocks Struct Reference

8.25.1 Detailed Description

Definition at line 111 of file memb.h.

Data Fields

• unsigned shortsize
• unsigned shortnum
• char∗ count
• void ∗ mem

8.26 mmem Struct Reference

8.26.1 Detailed Description

Definition at line 78 of file mmem.h.

Data Fields

• mmem∗ next
• unsigned intsize
• void ∗ ptr

8.27 mt_process Struct Reference

8.27.1 Detailed Description

Definition at line 337 of file mt.h.

Data Fields

• process∗ p
• mt_threadt

8.28 mt_thread Struct Reference

8.28.1 Detailed Description

Definition at line 163 of file mt.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.29 process Struct Reference 197

Data Fields

• int state
• process_event_t∗ evptr
• process_data_t∗ dataptr
• mtarch_threadthread

8.29 process Struct Reference

8.29.1 Detailed Description

Definition at line 332 of file process.h.

Data Fields

• process∗ next
• const char∗ name
• pt pt
• unsigned charstate

8.30 psock Struct Reference

#include <psock.h >

8.30.1 Detailed Description

The representation of a protosocket.

The protosocket structrure is an opaque structure with no user-visible elements.

Examples:
example-psock-server.c.

Definition at line 113 of file psock.h.

Data Fields

• pt pt psockpt
• const u8_t∗ sendptr
• u8_t∗ readptr
• char∗ bufptr
• u16_tsendlen
• u16_treadlen
• psock_bufbuf
• unsigned intbufsize
• unsigned charstate

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.31 psock_buf Struct Reference 198

8.31 psock_buf Struct Reference

8.31.1 Detailed Description

Definition at line 102 of file psock.h.

Data Fields

• u8_t∗ ptr
• unsigned shortleft

8.32 pt Struct Reference

8.32.1 Detailed Description

Definition at line 54 of file pt.h.

Data Fields

• lc_t lc

8.33 pt_sem Struct Reference

8.33.1 Detailed Description

Definition at line 165 of file pt-sem.h.

Data Fields

• unsigned intcount

8.34 service Struct Reference

8.34.1 Detailed Description

Definition at line 84 of file service.h.

Data Fields

• service∗ next
• process∗ p
• const char∗ name
• const void∗ interface

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.35 tcpip_uipstate Struct Reference 199

8.35 tcpip_uipstate Struct Reference

8.35.1 Detailed Description

Definition at line 72 of file tcpip.h.

Data Fields

• process∗ p
• void ∗ state

8.36 timer Struct Reference

#include <timer.h >

8.36.1 Detailed Description

A timer.

This structure is used for declaring a timer. The timer must be set withtimer_set()before it can be used.

Definition at line 87 of file timer.h.

Data Fields

• clock_time_tstart
• clock_time_tinterval

8.37 uip_conn Struct Reference

#include <uip.h >

8.37.1 Detailed Description

Representation of a uIP TCP connection.

The uip_conn structure is used for identifying a connection. All but one field in the structure are to be
considered read-only by an application. The only exception is the appstate field whos purpose is to let the
application store application-specific state (e.g., file pointers) for the connection. The type of this field is
configured in the "uipopt.h" header file.

Definition at line 1153 of file uip.h.

Data Fields

• uip_ipaddr_tripaddr

The IP address of the remote host.

• u16_tlport

The local TCP port, in network byte order.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.38 uip_eth_addr Struct Reference 200

• u16_trport

The local remote TCP port, in network byte order.

• u8_trcv_nxt[4]

The sequence number that we expect to receive next.

• u8_tsnd_nxt[4]

The sequence number that was last sent by us.

• u16_tlen

Length of the data that was previously sent.

• u16_tmss

Current maximum segment size for the connection.

• u16_tinitialmss

Initial maximum segment size for the connection.

• u8_tsa

Retransmission time-out calculation state variable.

• u8_tsv

Retransmission time-out calculation state variable.

• u8_trto

Retransmission time-out.

• u8_ttcpstateflags

TCP state and flags.

• u8_ttimer

The retransmission timer.

• u8_tnrtx

The number of retransmissions for the last segment sent.

• uip_tcp_appstate_tappstate

The application state.

8.38 uip_eth_addr Struct Reference

#include <uip.h >

8.38.1 Detailed Description

Representation of a 48-bit Ethernet address.

Definition at line 1543 of file uip.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.39 uip_eth_hdr Struct Reference 201

Data Fields

• u8_taddr[6]

8.39 uip_eth_hdr Struct Reference

#include <uip_arp.h >

8.39.1 Detailed Description

The Ethernet header.

Definition at line 63 of file uip_arp.h.

Data Fields

• uip_eth_addrdest
• uip_eth_addrsrc
• u16_ttype

8.40 uip_fw_netif Struct Reference

#include <uip-fw.h >

8.40.1 Detailed Description

Representation of a uIP network interface.

Definition at line 54 of file uip-fw.h.

Data Fields

• uip_fw_netif∗ next

Pointer to the next interface when linked in a list.

• u16_tipaddr[2]

The IP address of this interface.

• u16_tnetmask[2]

The netmask of the interface.

• u8_t(∗ output)(void)

A pointer to the function that sends a packet.

8.41 uip_icmpip_hdr Struct Reference

8.41.1 Detailed Description

Definition at line 1424 of file uip.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.42 uip_stats Struct Reference 202

Data Fields

• u8_tvhl
• u8_ttos
• u8_tlen [2]
• u8_tipid [2]
• u8_tipoffset[2]
• u8_tttl
• u8_tproto
• u16_tipchksum
• u16_tsrcipaddr[2]
• u16_tdestipaddr[2]
• u8_ttype
• u8_ticode
• u16_ticmpchksum
• u16_tid
• u16_tseqno

8.42 uip_stats Struct Reference

#include <uip.h >

8.42.1 Detailed Description

The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is set to 1.

Definition at line 1232 of file uip.h.

Data Fields

• struct {
uip_stats_tdrop

Number of dropped packets at the IP layer.
uip_stats_trecv

Number of received packets at the IP layer.
uip_stats_tsent

Number of sent packets at the IP layer.
uip_stats_tvhlerr

Number of packets dropped due to wrong IP version or header length.
uip_stats_thblenerr

Number of packets dropped due to wrong IP length, high byte.
uip_stats_tlblenerr

Number of packets dropped due to wrong IP length, low byte.
uip_stats_tfragerr

Number of packets dropped since they were IP fragments.
uip_stats_tchkerr

Number of packets dropped due to IP checksum errors.
uip_stats_tprotoerr

Number of packets dropped since they were neither ICMP, UDP nor TCP.
} ip

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.42 uip_stats Struct Reference 203

IP statistics.

• struct {
uip_stats_tdrop

Number of dropped ICMP packets.
uip_stats_trecv

Number of received ICMP packets.
uip_stats_tsent

Number of sent ICMP packets.
uip_stats_ttypeerr

Number of ICMP packets with a wrong type.
} icmp

ICMP statistics.

• struct {
uip_stats_tdrop

Number of dropped TCP segments.
uip_stats_trecv

Number of recived TCP segments.
uip_stats_tsent

Number of sent TCP segments.
uip_stats_tchkerr

Number of TCP segments with a bad checksum.
uip_stats_tackerr

Number of TCP segments with a bad ACK number.
uip_stats_trst

Number of recevied TCP RST (reset) segments.
uip_stats_trexmit

Number of retransmitted TCP segments.
uip_stats_tsyndrop

Number of dropped SYNs due to too few connections was avaliable.
uip_stats_tsynrst

Number of SYNs for closed ports, triggering a RST.
} tcp

TCP statistics.

• struct {
uip_stats_tdrop

Number of dropped UDP segments.
uip_stats_trecv

Number of recived UDP segments.
uip_stats_tsent

Number of sent UDP segments.
uip_stats_tchkerr

Number of UDP segments with a bad checksum.
} udp

UDP statistics.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.43 uip_tcpip_hdr Struct Reference 204

8.43 uip_tcpip_hdr Struct Reference

8.43.1 Detailed Description

Definition at line 1387 of file uip.h.

Data Fields

• u8_tvhl
• u8_ttos
• u8_tlen [2]
• u8_tipid [2]
• u8_tipoffset[2]
• u8_tttl
• u8_tproto
• u16_tipchksum
• u16_tsrcipaddr[2]
• u16_tdestipaddr[2]
• u16_tsrcport
• u16_tdestport
• u8_tseqno[4]
• u8_tackno[4]
• u8_ttcpoffset
• u8_tflags
• u8_twnd [2]
• u16_ttcpchksum
• u8_turgp[2]
• u8_toptdata[4]

8.44 uip_udp_conn Struct Reference

#include <uip.h >

8.44.1 Detailed Description

Representation of a uIP UDP connection.

Examples:
example-program.c.

Definition at line 1210 of file uip.h.

Data Fields

• uip_ipaddr_tripaddr

The IP address of the remote peer.

• u16_tlport

The local port number in network byte order.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

8.45 uip_udpip_hdr Struct Reference 205

• u16_trport

The remote port number in network byte order.

• u8_tttl

Default time-to-live.

• uip_udp_appstate_tappstate

The application state.

8.45 uip_udpip_hdr Struct Reference

8.45.1 Detailed Description

Definition at line 1461 of file uip.h.

Data Fields

• u8_tvhl
• u8_ttos
• u8_tlen [2]
• u8_tipid [2]
• u8_tipoffset[2]
• u8_tttl
• u8_tproto
• u16_tipchksum
• u16_tsrcipaddr[2]
• u16_tdestipaddr[2]
• u16_tsrcport
• u16_tdestport
• u16_tudplen
• u16_tudpchksum

9 Contiki 2.x File Documentation

9.1 apps/program-handler/program-handler.c File Reference

9.1.1 Detailed Description

The program handler, used for loading programs and starting the screensaver.

Author:
Adam Dunkels<adam@dunkels.com >

The Contiki program handler is responsible for the Contiki menu and the desktop icons, as well as for
loading programs and displaying a dialog with a message telling which program that is loading.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.1 apps/program-handler/program-handler.c File Reference 206

The program handler also is responsible for starting the screensaver when the CTK detects that it should
be started.

Definition in fileprogram-handler.c.

#include <string.h >

#include "contiki.h"

#include "ctk/ctk.h"

#include "ctk/ctk-draw.h"

#include "program-handler.h"

Defines

• #defineMAX_NUMDSCS10
• #defineLOADER_EVENT_LOAD1
• #defineLOADER_EVENT_DISPLAY_NAME2
• #defineNUM_PNARGS6

Initializes the program handler.

• #defineNAMELEN 32
• #defineRUN(prg, name, arg) program_handler_load(prg, arg)

Functions

• void program_handler_add(structdsc∗dsc, char∗menuname, unsigned char desktop)

Add a program to the program handler.

• void program_handler_load(char∗name, char∗arg)

Loads a program and displays a dialog telling the user about it.

• PROCESS_THREAD(program_handler_process, ev, data)

9.1.2 Define Documentation

9.1.2.1 #define NUM_PNARGS 6

Initializes the program handler.

Is called by the initialization before any programs have been added withprogram_handler_add().

Definition at line 158 of file program-handler.c.

9.1.3 Function Documentation

9.1.3.1 void program_handler_add (structdsc∗ dsc, char ∗ menuname, unsigned chardesktop)

Add a program to the program handler.

Parameters:
dsc The DSC description structure for the program to be added.

menunameThe name that the program should have in the Contiki menu.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.2 core/cfs/cfs.h File Reference 207

desktopFlag which specifies if the program should show up as an icon on the desktop or not.

Definition at line 139 of file program-handler.c.

References CTK_ICON_ADD, and dsc::icon.

9.1.3.2 void program_handler_load (char∗ name, char ∗ arg)

Loads a program and displays a dialog telling the user about it.

Parameters:
name The name of the program to be loaded.

arg An argument which is passed to the new process when it is loaded.

Definition at line 201 of file program-handler.c.

References ctk_dialog_open(), ctk_label_set_text, LOADER_EVENT_DISPLAY_NAME, NULL, and
process_post().

Referenced by PROCESS_THREAD().

9.2 core/cfs/cfs.h File Reference

9.2.1 Detailed Description

CFS header file.

Author:
Adam Dunkels<adam@sics.se >

Definition in filecfs.h.

#include "cfs/cfs-service.h"

Defines

• #defineCFS_READ0

Specify thatcfs_open()should open a file for reading.

• #defineCFS_WRITE1

Specify thatcfs_open()should open a file for writing.

• #definecfs_open(name, flags) (cfs_find_service()→ open(name, flags))
• #definecfs_close(fd) (cfs_find_service()→ close(fd))
• #definecfs_read(fd, buf, len) (cfs_find_service()→ read(fd, buf, len))
• #definecfs_write(fd, buf, len) (cfs_find_service()→ write(fd, buf, len))
• #definecfs_seek(fd, off) (cfs_find_service()→ seek(fd, off))
• #definecfs_opendir(dirp, name) (cfs_find_service()→ opendir(dirp, name))
• #definecfs_readdir(dirp, ent) (cfs_find_service()→ readdir(dirp, ent))
• #definecfs_closedir(dirp) (cfs_find_service()→ closedir(dirp))

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.3 core/ctk/ctk-draw.h File Reference 208

Functions

• int cfs_open(const char∗name, int flags)

Open a file.

• void cfs_close(int fd)

Close an open file.

• int cfs_read(int fd, char∗buf, unsigned int len)

Read data from an open file.

• int cfs_write(int fd, char∗buf, unsigned int len)

Write data to an open file.

• int cfs_seek(int fd, unsigned int offset)

Seek to a specified position in an open file.

• int cfs_opendir(struct cfs_dir∗dirp, const char∗name)

Open a directory for reading directory entries.

• int cfs_readdir(struct cfs_dir∗dirp, struct cfs_dirent∗dirent)

Read a directory entry.

• int cfs_closedir(struct cfs_dir∗dirp)

Close a directory opened withcfs_opendir().

9.3 core/ctk/ctk-draw.h File Reference

9.3.1 Detailed Description

CTK screen drawing module interface, ctk-draw.

Author:
Adam Dunkels<adam@dunkels.com >

This file contains the interface for the ctk-draw module.The ctk-draw module takes care of the actual screen
drawing for CTK by implementing a handful of functions that are called by CTK.

Definition in filectk-draw.h.

#include "ctk/ctk.h"

#include "contiki-conf.h"

Functions

• void ctk_draw_init(void)

The initialization function.

• void ctk_draw_clear(unsigned char clipy1, unsigned char clipy2)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.4 core/ctk/ctk.c File Reference 209

Clear the screen between the clip bounds.

• void ctk_draw_clear_window(struct ctk_window ∗window, unsigned char focus, unsigned char
clipy1, unsigned char clipy2)

Draw the window background.

• void ctk_draw_window(struct ctk_window∗window, unsigned char focus, unsigned char clipy1,
unsigned char clipy2, unsigned char draw_borders)

Draw a window onto the screen.

• void ctk_draw_dialog(structctk_window∗dialog)

Draw a dialog onto the screen.

• void ctk_draw_widget(structctk_widget∗w, unsigned char focus, unsigned char clipy1, unsigned
char clipy2)

Draw a widget on a window.

9.4 core/ctk/ctk.c File Reference

9.4.1 Detailed Description

The Contiki Toolkit CTK, the Contiki GUI.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in filectk.c.

#include <string.h >

#include "contiki.h"

#include "ctk/ctk.h"

#include "ctk/ctk-draw.h"

#include "ctk/ctk-mouse.h"

Defines

• #defineNULL (void ∗)0
• #defineREDRAW_NONE0
• #defineREDRAW_ALL 1
• #defineREDRAW_FOCUS2
• #defineREDRAW_WIDGETS4
• #defineREDRAW_MENUS8
• #defineREDRAW_MENUPART16
• #defineMAX_REDRAWWIDGETS4
• #defineICONX_START(width - 6)
• #defineICONY_START(height - 7)
• #defineICONX_DELTA -16
• #defineICONY_DELTA -5

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.4 core/ctk/ctk.c File Reference 210

• #defineICONY_MAX height
• #defineICONY_MIN 0
• #defineUP0
• #defineDOWN 1
• #defineLEFT 2
• #defineRIGHT 3

Functions

• void ctk_restore(void)
• void ctk_mode_set(unsigned char m)

Sets the current CTK mode.

• unsigned charctk_mode_get(void)

Retrieves the current CTK mode.

• void ctk_icon_add(CC_REGISTER_ARG structctk_widget∗icon, structprocess∗p)

Add an icon to the desktop.

• void ctk_dialog_open(structctk_window∗d)

Open a dialog box.

• void ctk_dialog_close(void)

Close the dialog box, if one is open.

• void ctk_window_open(CC_REGISTER_ARG structctk_window∗w)

Open a window, or bring window to front if already open.

• void ctk_window_close(structctk_window∗w)

Close a window if it is open.

• void ctk_window_clear(structctk_window∗w)

Remove all widgets from a window.

• void ctk_menu_add(structctk_menu∗menu)

Add a menu to the menu bar.

• void ctk_menu_remove(structctk_menu∗menu)

Remove a menu from the menu bar.

• void ctk_desktop_redraw(structctk_desktop∗d)

Redraw the entire desktop.

• void ctk_window_redraw(structctk_window∗w)

Redraw a window.

• void ctk_window_new(structctk_window∗window, unsigned char w, unsigned char h, char∗title)

Create a new window.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.4 core/ctk/ctk.c File Reference 211

• void ctk_dialog_new(CC_REGISTER_ARG structctk_window∗dialog, unsigned char w, unsigned
char h)

Creates a new dialog.

• void ctk_menu_new(CC_REGISTER_ARG structctk_menu∗menu, char∗title)

Creates a new menu.

• unsigned charctk_menuitem_add(CC_REGISTER_ARG structctk_menu∗menu, char∗name)

Adds a menu item to a menu.

• void ctk_widget_redraw(structctk_widget∗widget)

Redraws a widget.

• void CC_FASTCALLctk_widget_add(CC_REGISTER_ARG structctk_window∗window, CC_-
REGISTER_ARG structctk_widget∗widget)

Adds a widget to a window.

• unsigned charctk_desktop_width(structctk_desktop∗d)

Gets the width of the desktop.

• unsigned charctk_desktop_height(structctk_desktop∗d)

Gets the height of the desktop.

• PROCESS_THREAD(ctk_process, ev, data)

Variables

• process_event_tctk_signal_keypress

Emitted for every key being pressed.

• process_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

• process_event_tctk_signal_button_activate

Same as ctk_signal_widget_activate.

• process_event_tctk_signal_widget_select

Emitted when a widget is selected.

• process_event_tctk_signal_button_hover

Same as ctk_signal_widget_select.

• process_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

• process_event_tctk_signal_hyperlink_hover

Same as ctk_signal_widget_select.

• process_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.5 core/ctk/ctk.h File Reference 212

• process_event_tctk_signal_window_close

Emitted when a window is closed.

• process_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

• process_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

• unsigned shortctk_screensaver_timeout= (5∗60)

9.5 core/ctk/ctk.h File Reference

9.5.1 Detailed Description

CTK header file.

Author:
Adam Dunkels<adam@dunkels.com >

The CTK header file contains functioin declarations and definitions of CTK structures and macros.

Definition in filectk.h.

#include "contiki-conf.h"

#include "contiki.h"

Data Structures

• structctk_separator
• structctk_button
• structctk_label
• structctk_hyperlink
• structctk_textentry
• structctk_icon
• structctk_bitmap
• structctk_textmap
• structctk_widget_button
• structctk_widget_label
• structctk_widget_hyperlink
• structctk_widget_textentry
• structctk_widget_icon
• structctk_widget_bitmap
• structctk_widget

The generic CTK widget structure that contains all other widget structures.

• structctk_window

Representation of a CTK window.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.5 core/ctk/ctk.h File Reference 213

• structctk_menuitem

Representation of an individual menu item.

• structctk_menu

Representation of an individual menu.

• structctk_menus

Representation of the menu bar.

• structctk_desktop

Defines

• #defineCTK_WIDGET_SEPARATOR1

Widget number: The CTK separator widget.

• #defineCTK_WIDGET_LABEL 2

Widget number: The CTK label widget.

• #defineCTK_WIDGET_BUTTON3

Widget number: The CTK button widget.

• #defineCTK_WIDGET_HYPERLINK4

Widget number: The CTK hyperlink widget.

• #defineCTK_WIDGET_TEXTENTRY5

Widget number: The CTK textentry widget.

• #defineCTK_WIDGET_BITMAP6

Widget number: The CTK bitmap widget.

• #defineCTK_WIDGET_ICON7

Widget number: The CTK icon widget.

• #defineCTK_WIDGET_FLAG_INITIALIZER(x)
• #defineCTK_SEPARATOR(x, y, w) NULL, NULL, x, y, CTK_WIDGET_SEPARATOR, w, 1,

CTK_WIDGET_FLAG_INITIALIZER(0)

Instantiating macro for thectk_separatorwidget.

• #defineCTK_BUTTON(x, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1, CTK_-
WIDGET_FLAG_INITIALIZER(0) text

Instantiating macro for thectk_buttonwidget.

• #defineCTK_LABEL(x, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h, CTK_-
WIDGET_FLAG_INITIALIZER(0) text,

Instantiating macro for thectk_labelwidget.

• #defineCTK_HYPERLINK(x, y, w, text, url) NULL, NULL, x, y, CTK_WIDGET_HYPERLINK,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, url

Instantiating macro for thectk_hyperlinkwidget.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.5 core/ctk/ctk.h File Reference 214

• #defineCTK_TEXTENTRY_NORMAL0
• #defineCTK_TEXTENTRY_EDIT1
• #defineCTK_TEXTENTRY_CLEAR(e)

Clears a text entry widget and sets the cursor to the start of the text line.

• #defineCTK_TEXTENTRY(x, y, w, h, text, len)

Instantiating macro for thectk_textentrywidget.

• #defineCTK_TEXTENTRY_INPUT(x, y, w, h, text, len, input)
• #defineCTK_ICON_BITMAP(bitmap) NULL
• #defineCTK_ICON_TEXTMAP(textmap) NULL
• #defineCTK_ICON(title, bitmap, textmap)

Instantiating macro for thectk_iconwidget.

• #defineCTK_BITMAP(x, y, w, h, bitmap, bitmap_width, bitmap_height)
• #defineCTK_TEXTMAP_NORMAL 0
• #defineCTK_TEXTMAP_ACTIVE 1
• #defineCTK_TEXTMAP(x, y, w, h, textmap) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h,

CTK_WIDGET_FLAG_INITIALIZER(0) text, CTK_TEXTMAP_NORMAL
• #defineCTK_WIDGET_FLAG_NONE0
• #defineCTK_WIDGET_FLAG_MONOSPACE1
• #defineCTK_WIDGET_FLAG_CENTER2
• #defineCTK_WIDGET_SET_FLAG(w, f)
• #defineCTK_MAXMENUITEMS 8
• #defineCTK_REDRAW_NONE0
• #defineCTK_REDRAW_ALL 1
• #defineCTK_REDRAW_WINDOWS2
• #defineCTK_REDRAW_WIDGETS4
• #defineCTK_REDRAW_MENUS8
• #defineCTK_REDRAW_PART16
• #defineCTK_CONF_MAX_REDRAWWIDGETS8
• #defineCTK_CONF_MAX_REDRAWWINDOWS8
• #defineCTK_MODE_NORMAL0
• #defineCTK_MODE_WINDOWMOVE1
• #defineCTK_MODE_SCREENSAVER2
• #defineCTK_MODE_EXTERNAL3
• #definectk_window_move(w, xpos, ypos) do { (w)→ x=xpos; (w)→ y=ypos; } while(0)
• #definectk_window_isopen(w) ((w) → next != NULL)
• #defineCTK_ICON_ADD(icon, p) ctk_icon_add((structctk_widget∗)icon, p)

Add an icon to the desktop.

• #defineCTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (structctk_widget∗)widg)

Add a widget to a window.

• #defineCTK_WIDGET_FOCUS(win, widg) (win)→ focused = (structctk_widget∗)(widg)

Set focus to a widget.

• #defineCTK_WIDGET_REDRAW(widg) ctk_widget_redraw((structctk_widget∗)widg)

Add a widget to the redraw queue.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.5 core/ctk/ctk.h File Reference 215

• #defineCTK_WIDGET_TYPE(w) ((w) → type)

Obtain the type of a widget.

• #defineCTK_WIDGET_SET_WIDTH(widget, width)

Sets the width of a widget.

• #defineCTK_WIDGET_XPOS(w) (((structctk_widget∗)(w)) → x)

Retrieves the x position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_SET_XPOS(w, xpos) ((structctk_widget∗)(w)) → x = (xpos)

Sets the x position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_YPOS(w) (((structctk_widget∗)(w)) → y)

Retrieves the y position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_SET_YPOS(w, ypos) ((structctk_widget∗)(w)) → y = (ypos)

Sets the y position of a widget, relative to the window in which the widget is contained.

• #definectk_label_set_height(w, height) (w)→ widget.label.h = (height)

Set the height of a label.

• #definectk_label_set_text(l, t) (l) → text = (t)

Set the text of a label.

• #definectk_button_set_text(b, t) (b)→ text = (t)

Set the text of a button.

• #definectk_bitmap_set_bitmap(b, m) (b)→ bitmap = (m)
• #defineCTK_BUTTON_NEW(widg, xpos, ypos, width, buttontext)
• #defineCTK_LABEL_NEW(widg, xpos, ypos, width, height, labeltext)
• #defineCTK_BITMAP_NEW(widg, xpos, ypos, width, height, bmap)
• #defineCTK_TEXTENTRY_NEW(widg, xxpos, yypos, width, height, textptr, textlen)
• #defineCTK_TEXTENTRY_INPUT_NEW(widg, xxpos, yypos, width, height, textptr, textlen, iin-

put)
• #defineCTK_HYPERLINK_NEW(widg, xpos, ypos, width, linktext, linkurl)
• #defineCTK_FOCUS_NONE0

Widget focus flag: no focus.

• #defineCTK_FOCUS_WIDGET1

Widget focus flag: widget has focus.

• #defineCTK_FOCUS_WINDOW2

Widget focus flag: widget’s window is the foremost one.

• #defineCTK_FOCUS_DIALOG4

Widget focus flag: widget is in a dialog.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.5 core/ctk/ctk.h File Reference 216

Typedefs

• typedef charctk_arch_key_t

The keyboard character type of the system.

• typedef unsigned char(∗ ctk_textentry_input)(ctk_arch_key_tc, structctk_textentry∗t)

Functions

• void ctk_restore(void)
• void ctk_mode_set(unsigned char mode)

Sets the current CTK mode.

• unsigned charctk_mode_get(void)

Retrieves the current CTK mode.

• void ctk_window_new(structctk_window∗window, unsigned char w, unsigned char h, char∗title)

Create a new window.

• void ctk_window_clear(structctk_window∗w)

Remove all widgets from a window.

• void ctk_window_close(structctk_window∗w)

Close a window if it is open.

• void ctk_window_redraw(structctk_window∗w)

Redraw a window.

• void ctk_dialog_open(structctk_window∗d)

Open a dialog box.

• void ctk_dialog_close(void)

Close the dialog box, if one is open.

• void ctk_menu_add(structctk_menu∗menu)

Add a menu to the menu bar.

• void ctk_menu_remove(structctk_menu∗menu)

Remove a menu from the menu bar.

• void ctk_widget_redraw(structctk_widget∗widget)

Redraws a widget.

• void ctk_desktop_redraw(structctk_desktop∗d)

Redraw the entire desktop.

• unsigned charctk_desktop_width(structctk_desktop∗d)

Gets the width of the desktop.

• unsigned charctk_desktop_height(structctk_desktop∗d)

Gets the height of the desktop.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.6 core/dev/eeprom.h File Reference 217

Variables

• process_event_tctk_signal_keypress

Emitted for every key being pressed.

• process_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

• process_event_tctk_signal_widget_select

Emitted when a widget is selected.

• process_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

• process_event_tctk_signal_window_close

Emitted when a window is closed.

• process_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

• process_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

• process_event_tctk_signal_button_activate

Same as ctk_signal_widget_activate.

• process_event_tctk_signal_button_hover

Same as ctk_signal_widget_select.

• process_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

• process_event_tctk_signal_hyperlink_hover

Same as ctk_signal_widget_select.

9.6 core/dev/eeprom.h File Reference

9.6.1 Detailed Description

EEPROM functions.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileeeprom.h.

Defines

• #defineEEPROM_NULL0

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.7 core/dev/radio.h File Reference 218

Typedefs

• typedef unsigned shorteeprom_addr_t

Functions

• void eeprom_write(eeprom_addr_taddr, unsigned char∗buf, int size)

Write a buffer into EEPROM.

• void eeprom_read(eeprom_addr_taddr, unsigned char∗buf, int size)

Read data from the EEPROM.

• void eeprom_init(void)

Initialize the EEPROM module.

9.7 core/dev/radio.h File Reference

9.7.1 Detailed Description

Header file for the radio API.

Author:
Adam Dunkels<adam@sics.se >

Definition in file radio.h.

Functions

• void radio_on(void)

Turn radio on.

• void radio_off(void)

Turn radio off.

9.8 core/lib/crc16.c File Reference

9.8.1 Detailed Description

Implementation of the CRC16 calculcation.

Author:
Adam Dunkels<adam@sics.se >

Definition in filecrc16.c.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.9 core/lib/crc16.h File Reference 219

Functions

• unsigned shortcrc16_add(unsigned char b, unsigned short crc)

Update an accumulated CRC16 checksum with one byte.

9.9 core/lib/crc16.h File Reference

9.9.1 Detailed Description

Header file for the CRC16 calculcation.

Author:
Adam Dunkels<adam@sics.se >

Definition in filecrc16.h.

Functions

• unsigned shortcrc16_add(unsigned char b, unsigned short crc)

Update an accumulated CRC16 checksum with one byte.

9.10 core/lib/ctk-textedit.c File Reference

9.10.1 Detailed Description

An experimental CTK text edit widget.

Author:
Adam Dunkels<adam@dunkels.com >

This module contains an experimental CTK widget which is implemented in the application process rather
than in the CTK process. The widget is instantiated in a similar fashion as other CTK widgets, but is
different from other widgets in that it requires a signal handler function to be called by the process signal
handler function.

Definition in filectk-textedit.c.

#include "ctk-textedit.h"

#include <string.h >

Functions

• void ctk_textedit_init(structctk_textedit∗t)
• void ctk_textedit_add(structctk_window∗w, structctk_textedit∗t)

Add a CTK textedit widget to a window.

• void ctk_textedit_eventhandler(structctk_textedit∗t, process_event_ts,process_data_tdata)

The CTK textedit signal handler.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@dunkels.com

9.11 core/lib/ctk-textedit.h File Reference 220

9.10.2 Function Documentation

9.10.2.1 void ctk_textedit_add (structctk_window ∗ w, struct ctk_textedit ∗ t)

Add a CTK textedit widget to a window.

Parameters:
w A pointer to the window to which the entry is to be added.

t A pointer to the CTK textentry structure.

Definition at line 70 of file ctk-textedit.c.

References CTK_WIDGET_ADD, CTK_WIDGET_FLAG_MONOSPACE, and CTK_WIDGET_SET_-
FLAG.

9.10.2.2 void ctk_textedit_eventhandler (structctk_textedit ∗ t, process_event_ts, process_data_t
data)

The CTK textedit signal handler.

This function must be called as part of the normal signal handler of the process that contains the CTK
textentry structure.

Parameters:
t A pointer to the CTK textentry structure.

s The signal number.

data The signal data.

Definition at line 89 of file ctk-textedit.c.

References ctk_signal_keypress, ctk_signal_widget_activate, CTK_WIDGET_FOCUS, CTK_WIDGET_-
REDRAW, ctk_label::h, ctk_textedit::label, ctk_label::text, ctk_label::w, ctk_label::window, ctk_-
textedit::xpos, and ctk_textedit::ypos.

9.11 core/lib/ctk-textedit.h File Reference

9.11.1 Detailed Description

Header file for the experimental application level CTK textedit widget.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in filectk-textedit.h.

#include "ctk/ctk.h"

Data Structures

• structctk_textedit

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.11 core/lib/ctk-textedit.h File Reference 221

Defines

• #defineCTK_TEXTEDIT(tx, ty, tw, th, ttext) {CTK_LABEL(tx, ty, tw, th, ttext)}, 0, 0

Instantiating macro for the CTK textedit widget.

Functions

• void ctk_textedit_init(structctk_textedit∗t)
• void ctk_textedit_add(structctk_window∗w, structctk_textedit∗t)

Add a CTK textedit widget to a window.

• void ctk_textedit_eventhandler(structctk_textedit∗t, process_event_ts,process_data_tdata)

The CTK textedit signal handler.

9.11.2 Define Documentation

9.11.2.1 #define CTK_TEXTEDIT(tx, ty, tw, th, ttext) {CTK_LABEL(tx, ty, tw, th, ttext)}, 0, 0

Instantiating macro for the CTK textedit widget.

Parameters:
tx The x position of the widget.

ty The y position of the widget.

tw The width of the widget.

th The height of the widget.

ttext The text buffer to be edited.

Definition at line 57 of file ctk-textedit.h.

9.11.3 Function Documentation

9.11.3.1 void ctk_textedit_add (structctk_window ∗ w, struct ctk_textedit ∗ t)

Add a CTK textedit widget to a window.

Parameters:
w A pointer to the window to which the entry is to be added.

t A pointer to the CTK textentry structure.

Definition at line 70 of file ctk-textedit.c.

References CTK_WIDGET_ADD, CTK_WIDGET_FLAG_MONOSPACE, and CTK_WIDGET_SET_-
FLAG.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.12 core/lib/list.c File Reference 222

9.11.3.2 void ctk_textedit_eventhandler (structctk_textedit ∗ t, process_event_ts, process_data_t
data)

The CTK textedit signal handler.

This function must be called as part of the normal signal handler of the process that contains the CTK
textentry structure.

Parameters:
t A pointer to the CTK textentry structure.

s The signal number.

data The signal data.

Definition at line 89 of file ctk-textedit.c.

References ctk_signal_keypress, ctk_signal_widget_activate, CTK_WIDGET_FOCUS, CTK_WIDGET_-
REDRAW, ctk_label::h, ctk_textedit::label, ctk_label::text, ctk_label::w, ctk_label::window, ctk_-
textedit::xpos, and ctk_textedit::ypos.

9.12 core/lib/list.c File Reference

9.12.1 Detailed Description

Linked list library implementation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file list.c.

#include "lib/list.h"

Defines

• #defineNULL 0

Functions

• void list_init (list_t list)

Initialize a list.

• void ∗ list_head(list_t list)

Get a pointer to the first element of a list.

• void list_copy(list_t dest,list_t src)

Duplicate a list.

• void ∗ list_tail (list_t list)

Get the tail of a list.

• void list_add(list_t list, void ∗item)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.13 core/lib/list.h File Reference 223

Add an item at the end of a list.

• void list_push(list_t list, void ∗item)

Add an item to the start of the list.

• void ∗ list_chop(list_t list)

Remove the last object on the list.

• void ∗ list_pop(list_t list)

Remove the first object on a list.

• void list_remove(list_t list, void ∗item)

Remove a specific element from a list.

• int list_length(list_t list)

Get the length of a list.

• void list_insert(list_t list, void ∗previtem, void∗newitem)

Insert an item after a specified item on the list.

9.13 core/lib/list.h File Reference

9.13.1 Detailed Description

Linked list manipulation routines.

Author:
Adam Dunkels<adam@sics.se >

Definition in file list.h.

Defines

• #defineLIST_CONCAT2(s1, s2) s1##s2
• #defineLIST_CONCAT(s1, s2) LIST_CONCAT2(s1, s2)
• #defineLIST(name)

Declare a linked list.

Typedefs

• typedef void∗∗ list_t

The linked list type.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.14 core/lib/me.c File Reference 224

Functions

• void list_init (list_t list)

Initialize a list.

• void ∗ list_head(list_t list)

Get a pointer to the first element of a list.

• void ∗ list_tail (list_t list)

Get the tail of a list.

• void ∗ list_pop(list_t list)

Remove the first object on a list.

• void list_push(list_t list, void ∗item)

Add an item to the start of the list.

• void ∗ list_chop(list_t list)

Remove the last object on the list.

• void list_add(list_t list, void ∗item)

Add an item at the end of a list.

• void list_remove(list_t list, void ∗item)

Remove a specific element from a list.

• int list_length(list_t list)

Get the length of a list.

• void list_copy(list_t dest,list_t src)

Duplicate a list.

• void list_insert(list_t list, void ∗previtem, void∗newitem)

Insert an item after a specified item on the list.

9.14 core/lib/me.c File Reference

9.14.1 Detailed Description

Implementation of the table-driven Manchester encoding and decoding.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileme.c.

#include "me_tabs.h"

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.15 core/lib/me.h File Reference 225

Functions

• unsigned shortme_encode(unsigned char c)

Manchester encode an 8-bit byte.

• unsigned charme_decode16(unsigned short m)

Decode a Manchester encoded 16-bit word.

• unsigned charme_decode8(unsigned char m)

Decode a Manchester encoded 8-bit byte.

• unsigned charme_valid(unsigned char m)

Check if an encoded byte is valid.

9.15 core/lib/me.h File Reference

9.15.1 Detailed Description

Header file for the table-driven Manchester encoding and decoding.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileme.h.

Functions

• unsigned charme_valid(unsigned char m)

Check if an encoded byte is valid.

• unsigned shortme_encode(unsigned char c)

Manchester encode an 8-bit byte.

• unsigned charme_decode16(unsigned short m)

Decode a Manchester encoded 16-bit word.

• unsigned charme_decode8(unsigned char m)

Decode a Manchester encoded 8-bit byte.

9.16 core/lib/memb.c File Reference

9.16.1 Detailed Description

Memory block allocation routines.

Author:
Adam Dunkels<adam@sics.se >

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.17 core/lib/memb.h File Reference 226

Definition in filememb.c.

#include <string.h >

#include "lib/memb.h"

Functions

• void memb_init(structmemb_blocks∗m)

Initialize a memory block that was declared withMEMB().

• void ∗ memb_alloc(structmemb_blocks∗m)

Allocate a memory block from a block of memory declared withMEMB().

• charmemb_free(structmemb_blocks∗m, void∗ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

9.17 core/lib/memb.h File Reference

9.17.1 Detailed Description

Memory block allocation routines.

Author:
Adam Dunkels<adam@sics.se >

Definition in filememb.h.

Data Structures

• structmemb_blocks

Defines

• #defineMEMB_CONCAT2(s1, s2) s1##s2
• #defineMEMB_CONCAT(s1, s2) MEMB_CONCAT2(s1, s2)
• #defineMEMB(name, structure, num)

Declare a memory block.

Functions

• void memb_init(structmemb_blocks∗m)

Initialize a memory block that was declared withMEMB().

• void ∗ memb_alloc(structmemb_blocks∗m)

Allocate a memory block from a block of memory declared withMEMB().

• charmemb_free(structmemb_blocks∗m, void∗ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.18 core/lib/mmem.c File Reference 227

9.18 core/lib/mmem.c File Reference

9.18.1 Detailed Description

Implementation of the managed memory allocator.

Author:
Adam Dunkels<adam@sics.se >

Definition in filemmem.c.

#include "mmem.h"

#include "list.h"

#include <string.h >

Defines

• #defineMMEM_SIZE 4096

Functions

• int mmem_alloc(structmmem∗m, unsigned int size)

Allocate a managed memory block.

• void mmem_free(structmmem∗m)

Deallocate a managed memory block.

• void mmem_init(void)

Initialize the managed memory module.

Variables

• unsigned intavail_memory

9.19 core/lib/mmem.h File Reference

9.19.1 Detailed Description

Header file for the managed memory allocator.

Author:
Adam Dunkels<adam@sics.se >

Definition in filemmem.h.

Data Structures

• structmmem

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.20 core/lib/petsciiconv.h File Reference 228

Defines

• #defineMMEM_PTR(m)

Get a pointer to the managed memory.

Functions

• int mmem_alloc(structmmem∗m, unsigned int size)

Allocate a managed memory block.

• void mmem_free(structmmem∗m)

Deallocate a managed memory block.

• void mmem_init(void)

Initialize the managed memory module.

9.20 core/lib/petsciiconv.h File Reference

9.20.1 Detailed Description

PETSCII/ASCII conversion functions.

Author:
Adam Dunkels<adam@dunkels.com >

The Commodore based Contiki targets all have a special character encoding called PETSCII which differs
from the ASCII encoding that normally is used for representing characters.

Note:
For targets that do not use PETSCII encoding the C compiler define WITH_ASCII should be used to
avoid the PETSCII converting functions.

Definition in filepetsciiconv.h.

Defines

• #definepetsciiconv_toascii(buf, len)
• #definepetsciiconv_topetscii(buf, len)

9.21 core/loader/elfloader-arch.h File Reference

9.21.1 Detailed Description

Header file for the architecture specific parts of the Contiki ELF loader.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileelfloader-arch.h.

#include "elfloader-tmp.h"

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@sics.se

9.22 core/loader/elfloader-tmp.h File Reference 229

Functions

• void ∗ elfloader_arch_allocate_ram(int size)

Allocate RAM for a new module.

• void ∗ elfloader_arch_allocate_rom(int size)

Allocate program memory for a new module.

• void elfloader_arch_relocate(int fd, unsigned int sectionoffset, structelf32_rela∗rela, char∗addr)

Perform a relocation.

• void elfloader_arch_write_text(int fd, unsigned int size, char∗mem)

Write the program code (text segment) into program memory.

9.22 core/loader/elfloader-tmp.h File Reference

9.22.1 Detailed Description

Header file for the Contiki ELF loader.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileelfloader-tmp.h.

#include "cfs/cfs.h"

Data Structures

• structelf32_rela

Defines

• #defineELFLOADER_OK0

Return value fromelfloader_load()indicating that loading worked.

• #defineELFLOADER_BAD_ELF_HEADER1

Return value fromelfloader_load()indicating that the ELF file had a bad header.

• #defineELFLOADER_NO_SYMTAB2

Return value fromelfloader_load()indicating that no symbol table could be find in the ELF file.

• #defineELFLOADER_NO_STRTAB3

Return value fromelfloader_load()indicating that no string table could be find in the ELF file.

• #defineELFLOADER_NO_TEXT4

Return value fromelfloader_load()indicating that the size of the .text segment was zero.

• #defineELFLOADER_SYMBOL_NOT_FOUND5

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.23 core/net/psock.h File Reference 230

Return value fromelfloader_load()indicating that a symbol specific symbol could not be found.

• #defineELFLOADER_SEGMENT_NOT_FOUND6

Return value fromelfloader_load()indicating that one of the required segments (.data, .bss, or .text) could
not be found.

• #defineELFLOADER_NO_STARTPOINT7

Return value fromelfloader_load()indicating that no starting point could be found in the loaded module.

• #defineELFLOADER_DATAMEMORY_SIZE0x100
• #defineELFLOADER_TEXTMEMORY_SIZE0x100

Typedefs

• typedef unsigned longelf32_word
• typedef signed longelf32_sword
• typedef unsigned shortelf32_half
• typedef unsigned longelf32_off
• typedef unsigned longelf32_addr

Functions

• void elfloader_init(void)

elfloader initialization function.

• int elfloader_load(int fd)

Load and relocate an ELF file.

Variables

• process∗∗ elfloader_autostart_processes

A pointer to the processes loaded withelfloader_load().

• charelfloader_unknown[30]

If elfloader_load()could not find a specific symbol, it is copied into this array.

9.23 core/net/psock.h File Reference

9.23.1 Detailed Description

Protosocket library header file.

Author:
Adam Dunkels<adam@sics.se >

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.23 core/net/psock.h File Reference 231

Definition in filepsock.h.

#include "contiki.h"

#include "contiki-lib.h"

#include "contiki-net.h"

Data Structures

• structpsock_buf
• structpsock

The representation of a protosocket.

Defines

• #definePSOCK_INIT(psock, buffer, buffersize)

Initialize a protosocket.

• #definePSOCK_BEGIN(psock)

Start the protosocket protothread in a function.

• #definePSOCK_SEND(psock, data, datalen)

Send data.

• #definePSOCK_SEND_STR(psock, str)

Send a null-terminated string.

• #definePSOCK_GENERATOR_SEND(psock, generator, arg)

Generate data with a function and send it.

• #definePSOCK_CLOSE(psock)

Close a protosocket.

• #definePSOCK_READBUF(psock)

Read data until the buffer is full.

• #definePSOCK_READTO(psock, c)

Read data up to a specified character.

• #definePSOCK_DATALEN(psock)

The length of the data that was previously read.

• #definePSOCK_EXIT(psock)

Exit the protosocket’s protothread.

• #definePSOCK_CLOSE_EXIT(psock)

Close a protosocket and exit the protosocket’s protothread.

• #definePSOCK_END(psock)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.24 core/net/resolv.c File Reference 232

Declare the end of a protosocket’s protothread.

• #definePSOCK_NEWDATA(psock)

Check if new data has arrived on a protosocket.

• #definePSOCK_WAIT_UNTIL(psock, condition)

Wait until a condition is true.

• #definePSOCK_WAIT_THREAD(psock, condition) PT_WAIT_THREAD(&((psock) → pt), (con-
dition))

Functions

• u16_tpsock_datalen(structpsock∗psock)
• charpsock_newdata(structpsock∗s)

9.24 core/net/resolv.c File Reference

9.24.1 Detailed Description

DNS host name to IP address resolver.

Author:
Adam Dunkels<adam@dunkels.com >

This file implements a DNS host name to IP address resolver.

Definition in file resolv.c.

#include "net/tcpip.h"

#include "net/resolv.h"

#include <string.h >

Defines

• #defineNULL (void ∗)0
• #defineMAX_RETRIES8
• #defineDNS_FLAG1_RESPONSE0x80
• #defineDNS_FLAG1_OPCODE_STATUS0x10
• #defineDNS_FLAG1_OPCODE_INVERSE0x08
• #defineDNS_FLAG1_OPCODE_STANDARD0x00
• #defineDNS_FLAG1_AUTHORATIVE0x04
• #defineDNS_FLAG1_TRUNC0x02
• #defineDNS_FLAG1_RD0x01
• #defineDNS_FLAG2_RA0x80
• #defineDNS_FLAG2_ERR_MASK0x0f
• #defineDNS_FLAG2_ERR_NONE0x00
• #defineDNS_FLAG2_ERR_NAME0x03
• #defineSTATE_UNUSED0
• #defineSTATE_NEW1

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.25 core/net/resolv.h File Reference 233

• #defineSTATE_ASKING2
• #defineSTATE_DONE3
• #defineSTATE_ERROR4
• #defineRESOLV_ENTRIES4

Enumerations

• enum

Functions

• PROCESS_THREAD(resolv_process, ev, data)
• void resolv_query(char∗name)

Queues a name so that a question for the name will be sent out.

• u16_t∗ resolv_lookup(char∗name)

Look up a hostname in the array of known hostnames.

• u16_t∗ resolv_getserver(void)

Obtain the currently configured DNS server.

• void resolv_conf(u16_t∗dnsserver)

Configure a DNS server.

• void resolv_found(char∗name, u16_t∗ipaddr)

Variables

• process_event_tresolv_event_found

Event that is broadcasted when a DNS name has been resolved.

9.25 core/net/resolv.h File Reference

9.25.1 Detailed Description

uIP DNS resolver code header file.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in file resolv.h.

#include "contiki.h"

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.26 core/net/tcpip.h File Reference 234

Functions

• void resolv_found(char∗name, u16_t∗ipaddr)
• void resolv_conf(u16_t∗dnsserver)

Configure a DNS server.

• u16_t∗ resolv_getserver(void)

Obtain the currently configured DNS server.

• u16_t∗ resolv_lookup(char∗name)

Look up a hostname in the array of known hostnames.

• void resolv_query(char∗name)

Queues a name so that a question for the name will be sent out.

Variables

• process_event_tresolv_event_found

Event that is broadcasted when a DNS name has been resolved.

9.26 core/net/tcpip.h File Reference

9.26.1 Detailed Description

Header for the Contiki/uIP interface.

Author:
Adam Dunkels<adam@sics.se >

Definition in file tcpip.h.

#include "contiki.h"

#include "net/uip.h"

Data Structures

• structtcpip_uipstate

TCP functions

• #definetcp_markconn(conn, appstate) tcp_attach(conn, appstate)
• void tcp_attach(structuip_conn∗conn, void∗appstate)

Attach a TCP connection to the current process.

• void tcp_listen(u16_t port)

Open a TCP port.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.26 core/net/tcpip.h File Reference 235

• void tcp_unlisten(u16_t port)

Close a listening TCP port.

• uip_conn∗ tcp_connect(u16_t∗ripaddr, u16_t port, void∗appstate)

Open a TCP connection to the specified IP address and port.

• void tcpip_poll_tcp(structuip_conn∗conn)

Cause a specified TCP connection to be polled.

UDP functions

• #defineudp_markconn(conn, appstate) udp_attach(conn, appstate)
• #defineudp_bind(conn, port) uip_udp_bind(conn, port)

Bind a UDP connection to a local port.

• void udp_attach(structuip_udp_conn∗conn, void∗appstate)

Attach the current process to a UDP connection.

• uip_udp_conn∗ udp_new(u16_t∗ripaddr, u16_t port, void∗appstate)

Create a new UDP connection.

• uip_udp_conn∗ udp_broadcast_new(u16_t port, void∗appstate)

Create a new UDP broadcast connection.

• void tcpip_poll_udp(structuip_udp_conn∗conn)

Cause a specified UDP connection to be polled.

TCP/IP packet processing

• void tcpip_input(void)

Deliver an incoming packet to the TCP/IP stack.

• void tcpip_output(void)
• void tcpip_set_forwarding(unsigned char f)

Defines

• #defineUIP_APPCALLtcpip_uipcall

The name of the application function that uIP should call in response to TCP/IP events.

• #defineUIP_UDP_APPCALLtcpip_uipcall

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.26 core/net/tcpip.h File Reference 236

Typedefs

• typedeftcpip_uipstateuip_udp_appstate_t

The type of the application state that is to be stored in theuip_connstructure.

• typedeftcpip_uipstateuip_tcp_appstate_t

The type of the application state that is to be stored in theuip_connstructure.

Functions

• void tcpip_uipcall(void)

Variables

• process_event_ttcpip_event

The uIP event.

9.26.2 Define Documentation

9.26.2.1 #define udp_bind(conn, port) uip_udp_bind(conn, port)

Bind a UDP connection to a local port.

This function binds a UDP conncetion to a specified local port.

When a connction is created withudp_new(), it gets a local port number assigned automatically. If the
application needs to bind the connection to a specified local port, this function should be used.

Note:
The port number must be provided in network byte order so a conversion withHTONS() usually is
necessary.

Parameters:
conn A pointer to the UDP connection that is to be bound.

port The port number in network byte order to which to bind the connection.

Definition at line 259 of file tcpip.h.

Referenced by udp_broadcast_new().

9.26.3 Function Documentation

9.26.3.1 void tcpip_input (void)

Deliver an incoming packet to the TCP/IP stack.

This function is called by network device drivers to deliver an incoming packet to the TCP/IP stack. The
incoming packet must be present in the uip_buf buffer, and the length of the packet must be in the global
uip_len variable.

Examples:
example-packet-service.c.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.26 core/net/tcpip.h File Reference 237

Definition at line 333 of file tcpip.c.

References NULL, process_post_synch(), tcpip_input(), and uip_len.

Referenced by tcpip_input().

9.26.3.2 void tcpip_poll_udp (structuip_udp_conn∗ conn)

Cause a specified UDP connection to be polled.

This function causes uIP to poll the specified UDP connection. The function is used when the application
has data that is to be sent immediately and do not wish to wait for the periodic uIP polling mechanism.

Parameters:
conn A pointer to the UDP connection that should be polled.

Examples:
example-program.c.

Definition at line 340 of file tcpip.c.

References process_post(), and tcpip_poll_udp().

Referenced by resolv_query(), and tcpip_poll_udp().

9.26.3.3 void udp_attach (structuip_udp_conn∗ conn, void ∗ appstate)

Attach the current process to a UDP connection.

This function attaches the current process to a UDP connection. Each UDP connection must have a process
attached to it in order for the process to be able to receive and send data over the connection. Additionally,
this function can add a pointer with connection state to the connection.

Parameters:
conn A pointer to the UDP connection.

appstateAn opaque pointer that will be passed to the process whenever an event occurs on the con-
nection.

Definition at line 180 of file tcpip.c.

References uip_udp_conn::appstate, tcpip_uipstate::p, PROCESS_CURRENT, tcpip_uipstate::state, and
udp_attach().

Referenced by udp_attach().

9.26.3.4 structuip_udp_conn∗ udp_broadcast_new (u16_tport, void ∗ appstate)

Create a new UDP broadcast connection.

This function creates a new (link-local) broadcast UDP connection to a specified port.

Parameters:
port Port number in network byte order.

appstatePointer to application defined data.

Returns:
A pointer to the newly created connection, or NULL if memory could not be allocated for the connec-
tion.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.26 core/net/tcpip.h File Reference 238

Examples:
example-program.c.

Definition at line 209 of file tcpip.c.

References NULL, udp_bind, udp_broadcast_new(), udp_new(), and uip_ipaddr.

Referenced by udp_broadcast_new().

9.26.3.5 structuip_udp_conn∗ udp_new (u16_t∗ ripaddr, u16_tport, void ∗ appstate)

Create a new UDP connection.

This function creates a new UDP connection with the specified remote endpoint.

Note:
The port number must be provided in network byte order so a conversion withHTONS() usually is
necessary.

See also:
udp_bind()

Parameters:
ripaddr Pointer to the IP address of the remote host.

port Port number in network byte order.

appstatePointer to application defined data.

Returns:
A pointer to the newly created connection, or NULL if memory could not be allocated for the connec-
tion.

Definition at line 191 of file tcpip.c.

References uip_udp_conn::appstate, NULL, tcpip_uipstate::p, PROCESS_CURRENT, tcpip_-
uipstate::state, udp_new(), and uip_udp_new().

Referenced by PROCESS_THREAD(), udp_broadcast_new(), and udp_new().

9.26.4 Variable Documentation

9.26.4.1 process_event_ttcpip_event

The uIP event.

This event is posted to a process whenever a uIP event has occured.

Examples:
example-program.c, andexample-psock-server.c.

Definition at line 44 of file tcpip.c.

Referenced by PROCESS_THREAD(), and tcpip_uipcall().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.27 core/net/uip-fw.c File Reference 239

9.27 core/net/uip-fw.c File Reference

9.27.1 Detailed Description

uIP packet forwarding.

Author:
Adam Dunkels<adam@sics.se >

This file implements a number of simple functions which do packet forwarding over multiple network
interfaces with uIP.

Definition in fileuip-fw.c.

#include "net/uip.h"

#include "net/uip_arch.h"

#include "net/uip-fw.h"

#include "contiki-conf.h"

#include <string.h >

Defines

• #defineICMP_ECHO8
• #defineICMP_TE11
• #defineBUF ((struct tcpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineICMPBUF ((struct icmpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineFWCACHE_SIZE2
• #defineFW_TIME 20

Functions

• void uip_fw_init (void)

Initialize the uIP packet forwarding module.

• u8_tuip_fw_output(void)

Output an IP packet on the correct network interface.

• u8_tuip_fw_forward(void)

Forward an IP packet in the uip_buf buffer.

• void uip_fw_register(structuip_fw_netif∗netif)

Register a network interface with the forwarding module.

• void uip_fw_default(structuip_fw_netif∗netif)

Register a default network interface.

• void uip_fw_periodic(void)

Perform periodic processing.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.28 core/net/uip-fw.h File Reference 240

9.28 core/net/uip-fw.h File Reference

9.28.1 Detailed Description

uIP packet forwarding header file.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileuip-fw.h.

#include "net/uip.h"

Data Structures

• structuip_fw_netif

Representation of a uIP network interface.

Defines

• #defineUIP_FW_NETIF(ip1, ip2, ip3, ip4, nm1, nm2, nm3, nm4, outputfunc)

Intantiating macro for a uIP network interface.

• #defineuip_fw_setipaddr(netif, addr)

Set the IP address of a network interface.

• #defineuip_fw_setnetmask(netif, addr)

Set the netmask of a network interface.

• #defineUIP_FW_LOCAL

A non-error message that indicates that a packet should be processed locally.

• #defineUIP_FW_OK

A non-error message that indicates that something went OK.

• #defineUIP_FW_FORWARDED

A non-error message that indicates that a packet was forwarded.

• #defineUIP_FW_ZEROLEN

A non-error message that indicates that a zero-length packet transmission was attempted, and that no packet
was sent.

• #defineUIP_FW_TOOLARGE

An error message that indicates that a packet that was too large for the outbound network interface was
detected.

• #defineUIP_FW_NOROUTE

An error message that indicates that no suitable interface could be found for an outbound packet.

• #defineUIP_FW_DROPPED

An error message that indicates that a packet that should be forwarded or output was dropped.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.29 core/net/uip-split.h File Reference 241

Functions

• void uip_fw_init (void)

Initialize the uIP packet forwarding module.

• u8_tuip_fw_forward(void)

Forward an IP packet in the uip_buf buffer.

• u8_tuip_fw_output(void)

Output an IP packet on the correct network interface.

• void uip_fw_register(structuip_fw_netif∗netif)

Register a network interface with the forwarding module.

• void uip_fw_default(structuip_fw_netif∗netif)

Register a default network interface.

• void uip_fw_periodic(void)

Perform periodic processing.

9.29 core/net/uip-split.h File Reference

9.29.1 Detailed Description

Module for splitting outbound TCP segments in two to avoid the delayed ACK throughput degradation.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileuip-split.h.

Functions

• void uip_split_output(void)

Handle outgoing packets.

9.30 core/net/uip.c File Reference

9.30.1 Detailed Description

The uIP TCP/IP stack code.

Author:
Adam Dunkels<adam@dunkels.com >

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@dunkels.com

9.30 core/net/uip.c File Reference 242

Definition in fileuip.c.

#include "net/uip.h"

#include "net/uipopt.h"

#include "net/uip_arch.h"

#include <string.h >

Defines

• #defineDEBUG_PRINTF()
• #defineTCP_FIN0x01
• #defineTCP_SYN0x02
• #defineTCP_RST0x04
• #defineTCP_PSH0x08
• #defineTCP_ACK0x10
• #defineTCP_URG0x20
• #defineTCP_CTL0x3f
• #defineTCP_OPT_END0
• #defineTCP_OPT_NOOP1
• #defineTCP_OPT_MSS2
• #defineTCP_OPT_MSS_LEN4
• #defineICMP_ECHO_REPLY0
• #defineICMP_ECHO8
• #defineICMP6_ECHO_REPLY129
• #defineICMP6_ECHO128
• #defineICMP6_NEIGHBOR_SOLICITATION135
• #defineICMP6_NEIGHBOR_ADVERTISEMENT136
• #defineICMP6_FLAG_S(1 << 6)
• #defineICMP6_OPTION_SOURCE_LINK_ADDRESS1
• #defineICMP6_OPTION_TARGET_LINK_ADDRESS2
• #defineBUF ((structuip_tcpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineFBUF ((structuip_tcpip_hdr∗)&uip_reassbuf[0])
• #defineICMPBUF ((structuip_icmpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineUDPBUF((structuip_udpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineUIP_STAT(s)
• #defineUIP_LOG(m)

Functions

• void uip_setipid(u16_t id)

uIP initialization function.

• void uip_add32(u8_t∗op32, u16_t op16)
• u16_tuip_chksum(u16_t∗buf, u16_t len)

Calculate the Internet checksum over a buffer.

• u16_tuip_ipchksum(void)

Calculate the IP header checksum of the packet header in uip_buf.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.30 core/net/uip.c File Reference 243

• u16_tuip_tcpchksum(void)

Calculate the TCP checksum of the packet in uip_buf and uip_appdata.

• void uip_init (void)

uIP initialization function.

• uip_udp_conn∗ uip_udp_new(uip_ipaddr_t∗ripaddr, u16_t rport)

Set up a new UDP connection.

• void uip_unlisten(u16_t port)

Stop listening to the specified port.

• void uip_listen(u16_t port)

Start listening to the specified port.

• void uip_process(u8_t flag)
• u16_thtons(u16_t val)

Convert 16-bit quantity from host byte order to network byte order.

• void uip_send(const void∗data, int len)

Send data on the current connection.

Variables

• uip_ipaddr_tuip_hostaddr
• uip_ipaddr_tuip_draddr
• uip_ipaddr_tuip_netmask
• constuip_ipaddr_tuip_broadcast_addr
• uip_eth_addruip_ethaddr= {{0,0,0,0,0,0}}
• u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

• void ∗ uip_appdata

Pointer to the application data in the packet buffer.

• void ∗ uip_sappdata
• u16_tuip_len

The length of the packet in the uip_buf buffer.

• u16_tuip_slen
• u8_tuip_flags
• uip_conn∗ uip_conn

Pointer to the current TCP connection.

• uip_connuip_conns[UIP_CONNS]
• u16_tuip_listenports[UIP_LISTENPORTS]
• uip_udp_conn∗ uip_udp_conn

The current UDP connection.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.31 core/net/uip.h File Reference 244

• uip_udp_connuip_udp_conns[UIP_UDP_CONNS]
• u8_tuip_acc32[4]

4-byte array used for the 32-bit sequence number calculations.

9.31 core/net/uip.h File Reference

9.31.1 Detailed Description

Header file for the uIP TCP/IP stack.

Author:
Adam Dunkels<adam@dunkels.com >

The uIP TCP/IP stack header file contains definitions for a number of C macros that are used by uIP
programs as well as internal uIP structures, TCP/IP header structures and function declarations.

Definition in fileuip.h.

#include "net/uipopt.h"

Data Structures

• structuip_conn

Representation of a uIP TCP connection.

• structuip_udp_conn

Representation of a uIP UDP connection.

• structuip_stats

The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is set to 1.

• structuip_tcpip_hdr
• structuip_icmpip_hdr
• structuip_udpip_hdr
• structuip_eth_addr

Representation of a 48-bit Ethernet address.

Defines

• #defineuip_sethostaddr(addr)

Set the IP address of this host.

• #defineuip_gethostaddr(addr)

Get the IP address of this host.

• #defineuip_setdraddr(addr)

Set the default router’s IP address.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.31 core/net/uip.h File Reference 245

• #defineuip_setnetmask(addr)

Set the netmask.

• #defineuip_getdraddr(addr)

Get the default router’s IP address.

• #defineuip_getnetmask(addr)

Get the netmask.

• #defineuip_input()

Process an incoming packet.

• #defineuip_periodic(conn)

Periodic processing for a connection identified by its number.

• #defineuip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED)
• #defineuip_periodic_conn(conn)

Perform periodic processing for a connection identified by a pointer to its structure.

• #defineuip_poll_conn(conn)

Reuqest that a particular connection should be polled.

• #defineuip_udp_periodic(conn)

Periodic processing for a UDP connection identified by its number.

• #defineuip_udp_periodic_conn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

• #defineuip_outstanding(conn) ((conn)→ len)
• #defineuip_datalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.

• #defineuip_urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

• #defineuip_close()

Close the current connection.

• #defineuip_abort()

Abort the current connection.

• #defineuip_stop()

Tell the sending host to stop sending data.

• #defineuip_stopped(conn)

Find out if the current connection has been previously stopped withuip_stop().

• #defineuip_restart()

Restart the current connection, if is has previously been stopped withuip_stop().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.31 core/net/uip.h File Reference 246

• #defineuip_udpconnection()

Is the current connection a UDP connection?

• #defineuip_newdata()

Is new incoming data available?

• #defineuip_acked()

Has previously sent data been acknowledged?

• #defineuip_connected()

Has the connection just been connected?

• #defineuip_closed()

Has the connection been closed by the other end?

• #defineuip_aborted()

Has the connection been aborted by the other end?

• #defineuip_timedout()

Has the connection timed out?

• #defineuip_rexmit()

Do we need to retransmit previously data?

• #defineuip_poll()

Is the connection being polled by uIP?

• #defineuip_initialmss()

Get the initial maxium segment size (MSS) of the current connection.

• #defineuip_mss()

Get the current maxium segment size that can be sent on the current connection.

• #defineuip_udp_remove(conn)

Removed a UDP connection.

• #defineuip_udp_bind(conn, port)

Bind a UDP connection to a local port.

• #defineuip_udp_send(len)

Send a UDP datagram of length len on the current connection.

• #defineuip_ipaddr(addr, addr0, addr1, addr2, addr3)

Construct an IP address from four bytes.

• #defineuip_ip6addr(addr, addr0, addr1, addr2, addr3, addr4, addr5, addr6, addr7)

Construct an IPv6 address from eight 16-bit words.

• #defineuip_ipaddr_copy(dest, src)

Copy an IP address to another IP address.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.31 core/net/uip.h File Reference 247

• #defineuip_ipaddr_cmp(addr1, addr2)

Compare two IP addresses.

• #defineuip_ipaddr_maskcmp(addr1, addr2, mask)

Compare two IP addresses with netmasks.

• #defineuip_ipaddr_mask(dest, src, mask)

Mask out the network part of an IP address.

• #defineuip_ipaddr1(addr)

Pick the first octet of an IP address.

• #defineuip_ipaddr2(addr)

Pick the second octet of an IP address.

• #defineuip_ipaddr3(addr)

Pick the third octet of an IP address.

• #defineuip_ipaddr4(addr)

Pick the fourth octet of an IP address.

• #defineHTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

• #definentohshtons
• #defineUIP_ACKDATA 1
• #defineUIP_NEWDATA 2
• #defineUIP_REXMIT 4
• #defineUIP_POLL8
• #defineUIP_CLOSE16
• #defineUIP_ABORT32
• #defineUIP_CONNECTED64
• #defineUIP_TIMEDOUT128
• #defineUIP_DATA 1
• #defineUIP_TIMER2
• #defineUIP_POLL_REQUEST3
• #defineUIP_UDP_SEND_CONN4
• #defineUIP_UDP_TIMER5
• #defineUIP_CLOSED0
• #defineUIP_SYN_RCVD1
• #defineUIP_SYN_SENT2
• #defineUIP_ESTABLISHED3
• #defineUIP_FIN_WAIT_14
• #defineUIP_FIN_WAIT_25
• #defineUIP_CLOSING6
• #defineUIP_TIME_WAIT 7
• #defineUIP_LAST_ACK8
• #defineUIP_TS_MASK15
• #defineUIP_STOPPED16

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.31 core/net/uip.h File Reference 248

• #defineUIP_APPDATA_SIZE

The buffer size available for user data in theuip_bufbuffer.

• #defineUIP_PROTO_ICMP1
• #defineUIP_PROTO_TCP6
• #defineUIP_PROTO_UDP17
• #defineUIP_PROTO_ICMP658
• #defineUIP_IPH_LEN20
• #defineUIP_UDPH_LEN8
• #defineUIP_TCPH_LEN20
• #defineUIP_IPUDPH_LEN(UIP_UDPH_LEN + UIP_IPH_LEN)
• #defineUIP_IPTCPH_LEN(UIP_TCPH_LEN + UIP_IPH_LEN)
• #defineUIP_TCPIP_HLENUIP_IPTCPH_LEN

Typedefs

• typedef u16_tuip_ip4addr_t[2]

Repressentation of an IP address.

• typedef u16_tuip_ip6addr_t[8]
• typedefuip_ip4addr_tuip_ipaddr_t

Functions

• void uip_init (void)

uIP initialization function.

• void uip_setipid(u16_t id)

uIP initialization function.

• void uip_listen(u16_t port)

Start listening to the specified port.

• void uip_unlisten(u16_t port)

Stop listening to the specified port.

• uip_conn∗ uip_connect(uip_ipaddr_t∗ripaddr, u16_t port)

Connect to a remote host using TCP.

• void uip_send(const void∗data, int len)

Send data on the current connection.

• uip_udp_conn∗ uip_udp_new(uip_ipaddr_t∗ripaddr, u16_t rport)

Set up a new UDP connection.

• u16_thtons(u16_t val)

Convert 16-bit quantity from host byte order to network byte order.

• void uip_process(u8_t flag)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.32 core/net/uip_arp.c File Reference 249

• u16_tuip_chksum(u16_t∗buf, u16_t len)

Calculate the Internet checksum over a buffer.

• u16_tuip_ipchksum(void)

Calculate the IP header checksum of the packet header in uip_buf.

• u16_tuip_tcpchksum(void)

Calculate the TCP checksum of the packet in uip_buf and uip_appdata.

• u16_tuip_udpchksum(void)

Calculate the UDP checksum of the packet in uip_buf and uip_appdata.

Variables

• u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

• void ∗ uip_appdata

Pointer to the application data in the packet buffer.

• u16_tuip_len

The length of the packet in the uip_buf buffer.

• uip_conn∗ uip_conn

Pointer to the current TCP connection.

• uip_connuip_conns[UIP_CONNS]
• u8_tuip_acc32[4]

4-byte array used for the 32-bit sequence number calculations.

• uip_udp_conn∗ uip_udp_conn

The current UDP connection.

• uip_udp_connuip_udp_conns[UIP_UDP_CONNS]
• uip_statsuip_stat

The uIP TCP/IP statistics.

• u8_tuip_flags
• uip_ipaddr_tuip_hostaddr
• uip_ipaddr_tuip_netmask
• uip_ipaddr_tuip_draddr
• constuip_ipaddr_tuip_broadcast_addr

9.32 core/net/uip_arp.c File Reference

9.32.1 Detailed Description

Implementation of the ARP Address Resolution Protocol.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.33 core/net/uip_arp.h File Reference 250

Author:
Adam Dunkels<adam@dunkels.com >

Definition in fileuip_arp.c.

#include "net/uip_arp.h"

#include <string.h >

Defines

• #defineARP_REQUEST1
• #defineARP_REPLY2
• #defineARP_HWTYPE_ETH1
• #defineBUF ((struct arp_hdr∗)&uip_buf[0])
• #defineIPBUF ((struct ethip_hdr∗)&uip_buf[0])

Functions

• void uip_arp_init(void)

Initialize the ARP module.

• void uip_arp_timer(void)

Periodic ARP processing function.

• void uip_arp_arpin(void)

ARP processing for incoming ARP packets.

• void uip_arp_out(void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

9.33 core/net/uip_arp.h File Reference

9.33.1 Detailed Description

Macros and definitions for the ARP module.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in fileuip_arp.h.

#include "net/uip.h"

Data Structures

• structuip_eth_hdr

The Ethernet header.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@dunkels.com

9.34 core/net/uiplib.h File Reference 251

Defines

• #defineUIP_ETHTYPE_ARP0x0806
• #defineUIP_ETHTYPE_IP0x0800
• #defineUIP_ETHTYPE_IPV60x86dd
• #defineuip_arp_ipin()
• #defineuip_setethaddr(eaddr)

Specifiy the Ethernet MAC address.

Functions

• void uip_arp_init(void)

Initialize the ARP module.

• void uip_arp_arpin(void)

ARP processing for incoming ARP packets.

• void uip_arp_out(void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

• void uip_arp_timer(void)

Periodic ARP processing function.

Variables

• uip_eth_addruip_ethaddr

9.34 core/net/uiplib.h File Reference

9.34.1 Detailed Description

Various uIP library functions.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileuiplib.h.

Functions

• unsigned charuiplib_ipaddrconv(char∗addrstr, unsigned char∗addr)

Convert a textual representation of an IP address to a numerical representation.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.35 core/net/uipopt.h File Reference 252

9.35 core/net/uipopt.h File Reference

9.35.1 Detailed Description

Configuration options for uIP.

Author:
Adam Dunkels<adam@dunkels.com >

This file is used for tweaking various configuration options for uIP. You should make a copy of this file
into one of your project’s directories instead of editing this example "uipopt.h" file that comes with the uIP
distribution.

Definition in fileuipopt.h.

#include "contiki-conf.h"

#include "net/tcpip.h"

Defines

• #defineUIP_LITTLE_ENDIAN 3412
• #defineUIP_BIG_ENDIAN1234
• #defineUIP_FIXEDADDR

Determines if uIP should use a fixed IP address or not.

• #defineUIP_PINGADDRCONF

Ping IP address asignment.

• #defineUIP_FIXEDETHADDR

Specifies if the uIP ARP module should be compiled with a fixed Ethernet MAC address or not.

• #defineUIP_TTL 64

The IP TTL (time to live) of IP packets sent by uIP.

• #defineUIP_REASSEMBLY

Turn on support for IP packet reassembly.

• #defineUIP_REASS_MAXAGE40

The maximum time an IP fragment should wait in the reassembly buffer before it is dropped.

• #defineUIP_UDP

Toggles wether UDP support should be compiled in or not.

• #defineUIP_UDP_CHECKSUMS

Toggles if UDP checksums should be used or not.

• #defineUIP_UDP_CONNS

The maximum amount of concurrent UDP connections.

• #defineUIP_ACTIVE_OPEN

Determines if support for opening connections from uIP should be compiled in.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.35 core/net/uipopt.h File Reference 253

• #defineUIP_CONNS

The maximum number of simultaneously open TCP connections.

• #defineUIP_LISTENPORTS

The maximum number of simultaneously listening TCP ports.

• #defineUIP_URGDATA

Determines if support for TCP urgent data notification should be compiled in.

• #defineUIP_RTO3

The initial retransmission timeout counted in timer pulses.

• #defineUIP_MAXRTX 8

The maximum number of times a segment should be retransmitted before the connection should be aborted.

• #defineUIP_MAXSYNRTX 5

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

• #defineUIP_TCP_MSS(UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)

The TCP maximum segment size.

• #defineUIP_RECEIVE_WINDOW

The size of the advertised receiver’s window.

• #defineUIP_TIME_WAIT_TIMEOUT 120

How long a connection should stay in the TIME_WAIT state.

• #defineUIP_ARPTAB_SIZE

The size of the ARP table.

• #defineUIP_ARP_MAXAGE120

The maxium age of ARP table entries measured in 10ths of seconds.

• #defineUIP_BUFSIZE

The size of the uIP packet buffer.

• #defineUIP_STATISTICS

Determines if statistics support should be compiled in.

• #defineUIP_LOGGING

Determines if logging of certain events should be compiled in.

• #defineUIP_BROADCAST

Broadcast support.

• #defineUIP_LLH_LEN

The link level header length.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.36 core/sys/arg.c File Reference 254

• #defineUIP_BYTE_ORDER

The byte order of the CPU architecture on which uIP is to be run.

Functions

• void uip_log(char∗msg)

Print out a uIP log message.

9.36 core/sys/arg.c File Reference

9.36.1 Detailed Description

Argument buffer for passing arguments when starting processes.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in filearg.c.

#include "sys/arg.h"

Functions

• void arg_init(void)
• char∗ arg_alloc(char size)

Allocates an argument buffer.

• void arg_free(char∗arg)

Deallocates an argument buffer.

9.37 core/sys/cc.h File Reference

9.37.1 Detailed Description

Default definitions of C compiler quirk work-arounds.

Author:
Adam Dunkels<adam@dunkels.com >

This file is used for making use of extra functionality of some C compilers used for Contiki, and defining
work-arounds for various quirks and problems with some other C compilers.

Definition in filecc.h.

#include "contiki-conf.h"

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@dunkels.com

9.38 core/sys/dsc.h File Reference 255

Defines

• #defineCC_REGISTER_ARG

Configure if the C compiler supports the "register" keyword for function arguments.

• #defineCC_FUNCTION_POINTER_ARGS0

Configure if the C compiler supports the arguments for function pointers.

• #defineCC_FASTCALL

Configure if the C compiler supports fastcall function declarations.

• #defineCC_UNSIGNED_CHAR_BUGS0

Configure work-around for unsigned char bugs with sdcc.

• #defineCC_DOUBLE_HASH0

Configure if C compiler supports double hash marks in C macros.

• #defineCC_INLINE
• #defineNULL 0

9.38 core/sys/dsc.h File Reference

9.38.1 Detailed Description

Declaration of the DSC program description structure.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in filedsc.h.

#include "ctk/ctk.h"

Data Structures

• structdsc

The DSC program description structure.

Defines

• #defineDSC(dscname, description, prgname,process, icon) const structdscdscname = {description,
prgname, icon}

Intantiating macro for the DSC structure.

• #defineDSC_HEADER(name) extern structdscname;
• #defineNULL 0

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.39 core/sys/etimer.c File Reference 256

9.39 core/sys/etimer.c File Reference

9.39.1 Detailed Description

Event timer library implementation.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileetimer.c.

#include "contiki-conf.h"

#include "sys/etimer.h"

#include "sys/process.h"

Functions

• PROCESS_THREAD(etimer_process, ev, data)
• void etimer_request_poll(void)

Make the event timer aware that the clock has changed.

• void etimer_set(structetimer∗et, clock_time_t interval)

Set an event timer.

• void etimer_reset(structetimer∗et)

Reset an event timer with the same interval as was previously set.

• void etimer_restart(structetimer∗et)

Restart an event timer from the current point in time.

• void etimer_adjust(structetimer∗et, int timediff)

Adjust the expiration time for an event timer.

• int etimer_expired(structetimer∗et)

Check if an event timer has expired.

• clock_time_tetimer_expiration_time(structetimer∗et)

Get the expiration time for the event timer.

• clock_time_tetimer_start_time(structetimer∗et)

Get the start time for the event timer.

• int etimer_pending(void)

Check if there are any non-expired event timers.

• clock_time_tetimer_next_expiration_time(void)

Get next event timer expiration time.

• void etimer_stop(structetimer∗et)

Stop a pending event timer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.40 core/sys/etimer.h File Reference 257

9.40 core/sys/etimer.h File Reference

9.40.1 Detailed Description

Event timer header file.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileetimer.h.

#include "sys/timer.h"

#include "sys/process.h"

Data Structures

• structetimer

A timer.

Functions called from application programs

• void etimer_set(structetimer∗et, clock_time_t interval)

Set an event timer.

• void etimer_reset(structetimer∗et)

Reset an event timer with the same interval as was previously set.

• void etimer_restart(structetimer∗et)

Restart an event timer from the current point in time.

• void etimer_adjust(structetimer∗et, int td)

Adjust the expiration time for an event timer.

• clock_time_tetimer_expiration_time(structetimer∗et)

Get the expiration time for the event timer.

• clock_time_tetimer_start_time(structetimer∗et)

Get the start time for the event timer.

• int etimer_expired(structetimer∗et)

Check if an event timer has expired.

• void etimer_stop(structetimer∗et)

Stop a pending event timer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.41 core/sys/lc-addrlabels.h File Reference 258

Functions called from timer interrupts, by the system

• void etimer_request_poll(void)

Make the event timer aware that the clock has changed.

• int etimer_pending(void)

Check if there are any non-expired event timers.

• clock_time_tetimer_next_expiration_time(void)

Get next event timer expiration time.

9.41 core/sys/lc-addrlabels.h File Reference

9.41.1 Detailed Description

Implementation of local continuations based on the "Labels as values" feature of gcc.

Author:
Adam Dunkels<adam@sics.se >

This implementation of local continuations is based on a special feature of the GCC C compiler called
"labels as values". This feature allows assigning pointers with the address of the code corresponding to a
particular C label.

For more information, see the GCC documentation:http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

Thanks to dividuum for finding the nice local scope label implementation.

Definition in file lc-addrlabels.h.

Defines

• #defineLC_INIT(s) s = NULL
• #defineLC_RESUME(s)
• #defineLC_SET(s) do { ({ __label__ resume; resume: (s) = &&resume; }); }while(0)
• #defineLC_END(s)

Typedefs

• typedef void∗ lc_t

9.42 core/sys/lc-switch.h File Reference

9.42.1 Detailed Description

Implementation of local continuations based on switch() statment.

Author:
Adam Dunkels<adam@sics.se >

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
mailto:adam@sics.se

9.43 core/sys/lc.h File Reference 259

This implementation of local continuations uses the C switch() statement to resume execution of a function
somewhere inside the function’s body. The implementation is based on the fact that switch() statements are
able to jump directly into the bodies of control structures such as if() or while() statmenets.

This implementation borrows heavily from Simon Tatham’s coroutines implementation in C:
http://www.chiark.greenend.org.uk/ ∼sgtatham/coroutines.html

Definition in file lc-switch.h.

Defines

• #define__LC_SWTICH_H__
• #defineLC_INIT(s) s = 0;
• #defineLC_RESUME(s) switch(s) { case 0:
• #defineLC_SET(s) s = __LINE__; case __LINE__:
• #defineLC_END(s) }

Typedefs

• typedef unsigned shortlc_t

The local continuation type.

9.43 core/sys/lc.h File Reference

9.43.1 Detailed Description

Local continuations.

Author:
Adam Dunkels<adam@sics.se >

Definition in file lc.h.

#include "sys/lc-switch.h"

Defines

• #defineLC_INIT(lc)

Initialize a local continuation.

• #defineLC_SET(lc)

Set a local continuation.

• #defineLC_RESUME(lc)

Resume a local continuation.

• #defineLC_END(lc)

Mark the end of local continuation usage.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
mailto:adam@sics.se

9.44 core/sys/loader.h File Reference 260

9.44 core/sys/loader.h File Reference

9.44.1 Detailed Description

Default definitions and error values for the Contiki program loader.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in file loader.h.

Defines

• #defineLOADER_OK0

No error.

• #defineLOADER_ERR_READ1

Read error.

• #defineLOADER_ERR_HDR2

Header error.

• #defineLOADER_ERR_OS3

Wrong OS.

• #defineLOADER_ERR_FMT4

Data format error.

• #defineLOADER_ERR_MEM5

Not enough memory.

• #defineLOADER_ERR_OPEN6

Could not open file.

• #defineLOADER_ERR_ARCH7

Wrong architecture.

• #defineLOADER_ERR_VERSION8

Wrong OS version.

• #defineLOADER_ERR_NOLOADER9

Program loading not supported.

• #defineLOADER_LOAD(name, arg) LOADER_ERR_NOLOADER

Load and execute a program.

• #defineLOADER_UNLOAD()

Unload a program from memory.

• #defineLOADER_LOAD_DSC(name) NULL

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.45 core/sys/mt.c File Reference 261

Load a DSC (program description).

• #defineLOADER_UNLOAD_DSC(dsc)

Unload a DSC (program description).

9.45 core/sys/mt.c File Reference

9.45.1 Detailed Description

Implementation of the archtecture agnostic parts of the preemptive multithreading library for Contiki.

Author:
Adam Dunkels<adam@sics.se >

Definition in filemt.c.

#include "contiki.h"

#include "sys/mt.h"

#include "sys/cc.h"

Defines

• #defineMT_STATE_READY1
• #defineMT_STATE_RUNNING2
• #defineMT_STATE_WAITING 3
• #defineMT_STATE_PEEK4
• #defineMT_STATE_EXITED5

Functions

• void mt_init (void)

Initializes the multithreading library.

• void mt_remove(void)

Uninstalls library and cleans up.

• void mt_start(structmt_thread∗thread, void(∗function)(void∗), void ∗data)

Starts a multithreading thread.

• void mt_exec(structmt_thread∗thread)

Execute parts of a thread.

• void mt_exit(void)

Exit a thread.

• void mt_exec_event(structmt_thread∗thread,process_event_tev,process_data_tdata)

Post an event to a thread.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.46 core/sys/mt.h File Reference 262

• void mt_yield(void)

Voluntarily give up the processor.

• void mt_post(structprocess∗p, process_event_tev,process_data_tdata)

Post an event to another process.

• void mt_wait(process_event_t∗ev,process_data_t∗data)

Block and wait for an event to occur.

• void mt_peek(process_event_t∗ev,process_data_t∗data)
• void mtp_start(structmt_process∗t, void(∗function)(void∗), void ∗data)

Start a thread.

• void mtp_exit(void)

9.46 core/sys/mt.h File Reference

9.46.1 Detailed Description

Header file for the preemptive multitasking library for Contiki.

Author:
Adam Dunkels<adam@sics.se >

Definition in filemt.h.

#include "contiki.h"

#include "mtarch.h"

Data Structures

• structmt_thread
• structmt_process

Defines

• #defineMT_OK

No error.

• #defineMT_PROCESS(name, strname)

Declare a multithreaded process.

Functions

• void mtarch_init(void)

Initialize the architecture specific support functions for the multi-thread library.

• void mtarch_remove(void)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.47 core/sys/process.c File Reference 263

Uninstall library and clean up.

• void mtarch_start(struct mtarch_thread∗thread, void(∗function)(void∗data), void∗data)

Setup the stack frame for a thread that is being started.

• void mtarch_yield(void)

Yield the processor.

• void mtarch_exec(struct mtarch_thread∗thread)

Start executing a thread.

• void mt_init (void)

Initializes the multithreading library.

• void mt_remove(void)

Uninstalls library and cleans up.

• void mt_start(structmt_thread∗thread, void(∗function)(void∗), void ∗data)

Starts a multithreading thread.

• void mt_exec(structmt_thread∗thread)

Execute parts of a thread.

• void mt_exec_event(structmt_thread∗thread,process_event_ts,process_data_tdata)

Post an event to a thread.

• void mt_yield(void)

Voluntarily give up the processor.

• void mt_post(structprocess∗p, process_event_tev,process_data_tdata)

Post an event to another process.

• void mt_wait(process_event_t∗ev,process_data_t∗data)

Block and wait for an event to occur.

• void mt_exit(void)

Exit a thread.

• void mtp_start(structmt_process∗p, void(∗function)(void∗), void ∗data)

Start a thread.

• void mtp_exit(void)

9.47 core/sys/process.c File Reference

9.47.1 Detailed Description

Implementation of the Contiki process kernel.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.47 core/sys/process.c File Reference 264

Author:
Adam Dunkels<adam@sics.se >

Definition in fileprocess.c.

#include <stdio.h >

#include "sys/process.h"

#include "sys/arg.h"

Defines

• #definePROCESS_STATE_NONE0
• #definePROCESS_STATE_INIT1
• #definePROCESS_STATE_RUNNING2
• #definePROCESS_STATE_NEEDS_POLL3

Functions

• process_event_tprocess_alloc_event(void)

Allocate a global event number.

• void process_start(structprocess∗p, char∗arg)

Start a process.

• void process_exit(structprocess∗p)

Cause a process to exit.

• void process_init(void)

Initialize the process module.

• int process_run(void)

Run the system once - call poll handlers and process one event.

• int process_post(structprocess∗p, process_event_tev,process_data_tdata)

Post an asynchronous event.

• void process_post_synch(structprocess∗p, process_event_tev,process_data_tdata)

Post a synchronous event to a process.

• void process_poll(structprocess∗p)

Request a process to be polled.

Variables

• process∗ process_list= NULL
• process∗ process_current= NULL

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.48 core/sys/process.h File Reference 265

9.48 core/sys/process.h File Reference

9.48.1 Detailed Description

Header file for the Contiki process interface.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileprocess.h.

#include "sys/pt.h"

#include "sys/cc.h"

Data Structures

• structprocess

Return values

• #definePROCESS_ERR_OK0

Return value indicating that an operation was successful.

• #definePROCESS_ERR_FULL1

Return value indicating that the event queue was full.

Process protothread functions

• #definePROCESS_BEGIN()

Define the beginning of a process.

• #definePROCESS_END()

Define the end of a process.

• #definePROCESS_WAIT_EVENT()

Wait for an event to be posted to the process.

• #definePROCESS_WAIT_EVENT_UNTIL(c)

Wait for an event to be posted to the process, with an extra condition.

• #definePROCESS_YIELD()

Yield the currently running process.

• #definePROCESS_YIELD_UNTIL(c)

Yield the currently running process until a condition occurs.

• #definePROCESS_WAIT_UNTIL(c)

Wait for a condition to occur.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.48 core/sys/process.h File Reference 266

• #definePROCESS_EXIT()

Exit the currently running process.

• #definePROCESS_SPAWN(pt, thread)

Spawn a protothread from the process.

• #definePROCESS_PAUSE()

Yield the process for a short while.

Poll and exit handlers

• #definePROCESS_POLLHANDLER(handler)

Specify an action when a process is polled.

• #definePROCESS_EXITHANDLER(handler)

Specify an action when a process exits.

Process declaration and definion

• #definePROCESS_THREAD(name, ev, data)

Define the body of a process.

• #definePROCESS_LOAD(name)
• #definePROCESS_NAME(name)

Declare the name of a process.

• #definePROCESS_NOLOAD(name, strname)

Declare a process that should not be automatically loaded.

• #definePROCESS(name, strname)

Declare a process.

Functions called from application programs

• #definePROCESS_CURRENT()

Get a pointer to the currently running process.

• #definePROCESS_SET_FLAGS(flags)
• #definePROCESS_NO_BROADCAST
• #definePROCESS_CONTEXT_BEGIN(p)

Switch context to another process.

• #definePROCESS_CONTEXT_END(p) process_current= tmp_current; }

End a context switch.

• void process_start(structprocess∗p, char∗arg)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.48 core/sys/process.h File Reference 267

Start a process.

• int process_post(structprocess∗p, process_event_tev,process_data_tdata)

Post an asynchronous event.

• void process_post_synch(structprocess∗p, process_event_tev,process_data_tdata)

Post a synchronous event to a process.

• void process_exit(structprocess∗p)

Cause a process to exit.

• process_event_tprocess_alloc_event(void)

Allocate a global event number.

• process∗ process_current

Functions called from device drivers

• void process_poll(structprocess∗p)

Request a process to be polled.

Functions called by the system and boot-up code

• void process_init(void)

Initialize the process module.

• int process_run(void)

Run the system once - call poll handlers and process one event.

Defines

• #definePROCESS_NONENULL
• #definePROCESS_CONF_NUMEVENTS32
• #definePROCESS_EVENT_NONE0x80
• #definePROCESS_EVENT_INIT0x81
• #definePROCESS_EVENT_POLL0x82
• #definePROCESS_EVENT_EXIT0x83
• #definePROCESS_EVENT_SERVICE_REMOVED0x84
• #definePROCESS_EVENT_CONTINUE0x85
• #definePROCESS_EVENT_MSG0x86
• #definePROCESS_EVENT_EXITED0x87
• #definePROCESS_EVENT_TIMER0x88
• #definePROCESS_EVENT_MAX0x89
• #definePROCESS_BROADCASTNULL
• #definePROCESS_ZOMBIE((structprocess∗)0x1)
• #definePROCESS_LIST() process_list

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.48 core/sys/process.h File Reference 268

Typedefs

• typedef unsigned charprocess_event_t
• typedef void∗ process_data_t
• typedef unsigned charprocess_num_events_t

Variables

• process∗ process_list

9.48.2 Define Documentation

9.48.2.1 #define PROCESS(name, strname)

Declare a process.

This macro declares a process. The process has two names: the variable of the process structure, which is
used by the C program, and a human readable string name, which is used when debugging.

Note:
For programs that are compiled as loadable programs: the process declared with thePROCESS()
declaration will be automatically started when the program is loaded. ThePROCESS_NOLOAD()
declaration can be used to declare a process that shouldn’t be automatically loaded.

Parameters:
name The variable name of the process structure.

strname The string repressentation of the process’ name.

Examples:
example-packet-service.c, example-pollhandler.c, example-program.c, example-psock-server.c,
example-service.c, andexample-use-service.c.

Definition at line 326 of file process.h.

9.48.2.2 #define PROCESS_BEGIN()

Define the beginning of a process.

This macro defines the beginning of a process, and must always appear in aPROCESS_THREAD()defi-
nition. ThePROCESS_END()macro must come at the end of the process.

Examples:
example-packet-service.c, example-pollhandler.c, example-program.c, example-psock-server.c,
example-service.c, andexample-use-service.c.

Definition at line 120 of file process.h.

Referenced by PROCESS_THREAD().

9.48.2.3 #define PROCESS_CONTEXT_BEGIN(p)

Value:

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.48 core/sys/process.h File Reference 269

{\
struct process *tmp_current = PROCESS_CURRENT();\
process_current = p

Switch context to another process.

This function switch context to the specified process and executes the code as if run by that process.
Typical use of this function is to switch context in services, called by other processes. EachPROCESS_-
CONTEXT_BEGIN()must be followed by thePROCESS_CONTEXT_END()macro to end the context
switch.

Example:

PROCESS_CONTEXT_BEGIN(&test_process);
etimer_set(&timer, CLOCK_SECOND);
PROCESS_CONTEXT_END(&test_process);

Parameters:
p The process to use as context

See also:
PROCESS_CONTEXT_END()
PROCESS_CURRENT()

Definition at line 441 of file process.h.

9.48.2.4 #define PROCESS_CONTEXT_END(p)process_current= tmp_current; }

End a context switch.

This function ends a context switch and changes back to the previous process.

Parameters:
p The process used in the context switch

See also:
PROCESS_CONTEXT_START()

Definition at line 455 of file process.h.

9.48.2.5 #define PROCESS_CURRENT()

Get a pointer to the currently running process.

This macro get a pointer to the currently running process. Typically, this macro is used to post an event to
the current process withprocess_post().

Definition at line 414 of file process.h.

Referenced by ctk_desktop_redraw(), process_exit(), service_register(), tcp_attach(), tcp_connect(), tcp_-
listen(), tcp_unlisten(), udp_attach(), and udp_new().

9.48.2.6 #define PROCESS_END()

Define the end of a process.

This macro defines the end of a process. It must appear in aPROCESS_THREAD()definition and must
always be included. The process exits when thePROCESS_END()macro is reached.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.48 core/sys/process.h File Reference 270

Examples:
example-packet-service.c, example-pollhandler.c, example-program.c, example-psock-server.c,
example-service.c, andexample-use-service.c.

Definition at line 131 of file process.h.

Referenced by PROCESS_THREAD().

9.48.2.7 #define PROCESS_EXITHANDLER(handler)

Specify an action when a process exits.

Note:
This declaration must come immediately before thePROCESS_BEGIN()macro.

Parameters:
handler The action to be performed.

Examples:
example-pollhandler.c, andexample-service.c.

Definition at line 253 of file process.h.

9.48.2.8 #define PROCESS_NAME(name)

Declare the name of a process.

This macro is typically used in header files to declare the name of a process that is implemented in the C
file.

Definition at line 292 of file process.h.

9.48.2.9 #define PROCESS_NOLOAD(name, strname)

Declare a process that should not be automatically loaded.

This macro is similar to thePROCESS()declaration, with the difference that for programs that are com-
piled as loadable programs, processes declared with thePROCESS_NOLOAD()declaration will not be
automatically started when the program is loaded.

Definition at line 304 of file process.h.

9.48.2.10 #define PROCESS_PAUSE()

Yield the process for a short while.

This macro yields the currently running process for a short while, thus letting other processes run before
the process continues.

Definition at line 220 of file process.h.

9.48.2.11 #define PROCESS_POLLHANDLER(handler)

Specify an action when a process is polled.

Note:
This declaration must come immediately before thePROCESS_BEGIN()macro.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.48 core/sys/process.h File Reference 271

Parameters:
handler The action to be performed.

Examples:
example-packet-service.c, andexample-pollhandler.c.

Definition at line 241 of file process.h.

9.48.2.12 #define PROCESS_SPAWN(pt, thread)

Spawn a protothread from the process.

Parameters:
pt The protothread state (struct pt) for the new protothread

thread The call to the protothread function.

See also:
PT_SPAWN()

Definition at line 210 of file process.h.

9.48.2.13 #define PROCESS_THREAD(name, ev, data)

Define the body of a process.

This macro is used to define the body (protothread) of a process. The process is called whenever an
event occurs in the system, A process always start with thePROCESS_BEGIN()macro and end with the
PROCESS_END()macro.

Examples:
example-packet-service.c, example-pollhandler.c, example-program.c, example-psock-server.c,
example-service.c, andexample-use-service.c.

Definition at line 272 of file process.h.

9.48.2.14 #define PROCESS_WAIT_EVENT()

Wait for an event to be posted to the process.

This macro blocks the currently running process until the process receives an event.

Examples:
example-pollhandler.c.

Definition at line 141 of file process.h.

Referenced by PROCESS_THREAD().

9.48.2.15 #define PROCESS_WAIT_EVENT_UNTIL(c)

Wait for an event to be posted to the process, with an extra condition.

This macro is similar toPROCESS_WAIT_EVENT()in that it blocks the currently running process until
the process receives an event. ButPROCESS_WAIT_EVENT_UNTIL()takes an extra condition which
must be true for the process to continue.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.49 core/sys/pt-sem.h File Reference 272

Parameters:
c The condition that must be true for the process to continue.

See also:
PT_WAIT_UNTIL()

Examples:
example-packet-service.c, example-program.c, andexample-psock-server.c.

Definition at line 157 of file process.h.

9.48.2.16 #define PROCESS_WAIT_UNTIL(c)

Wait for a condition to occur.

This macro does not guarantee that the process yields, and should therefore be used with care. In
most cases,PROCESS_WAIT_EVENT(), PROCESS_WAIT_EVENT_UNTIL(), PROCESS_YIELD()or
PROCESS_YIELD_UNTIL()should be used instead.

Parameters:
c The condition to wait for.

Definition at line 192 of file process.h.

9.48.2.17 #define PROCESS_YIELD_UNTIL(c)

Yield the currently running process until a condition occurs.

This macro is different fromPROCESS_WAIT_UNTIL()in thatPROCESS_YIELD_UNTIL()is guaran-
teed to always yield at least once. This ensures that the process does not end up in an infinite loop and
monopolizing the CPU.

Parameters:
c The condition to wait for.

Examples:
example-service.c, andexample-use-service.c.

Definition at line 178 of file process.h.

9.49 core/sys/pt-sem.h File Reference

9.49.1 Detailed Description

Counting semaphores implemented on protothreads.

Author:
Adam Dunkels<adam@sics.se >

Definition in filept-sem.h.

#include "sys/pt.h"

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.50 core/sys/pt.h File Reference 273

Data Structures

• structpt_sem

Defines

• #definePT_SEM_INIT(s, c)

Initialize a semaphore.

• #definePT_SEM_WAIT(pt, s)

Wait for a semaphore.

• #definePT_SEM_SIGNAL(pt, s)

Signal a semaphore.

9.50 core/sys/pt.h File Reference

9.50.1 Detailed Description

Protothreads implementation.

Author:
Adam Dunkels<adam@sics.se >

Definition in filept.h.

#include "sys/lc.h"

Data Structures

• structpt

Initialization

• #definePT_INIT(pt)

Initialize a protothread.

Declaration and definition

• #definePT_THREAD(name_args)

Declaration of a protothread.

• #definePT_BEGIN(pt)

Declare the start of a protothread inside the C function implementing the protothread.

• #definePT_END(pt)

Declare the end of a protothread.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.50 core/sys/pt.h File Reference 274

Blocked wait

• #definePT_WAIT_UNTIL(pt, condition)

Block and wait until condition is true.

• #definePT_WAIT_WHILE(pt, cond)

Block and wait while condition is true.

Hierarchical protothreads

• #definePT_WAIT_THREAD(pt, thread)

Block and wait until a child protothread completes.

• #definePT_SPAWN(pt, child, thread)

Spawn a child protothread and wait until it exits.

Exiting and restarting

• #definePT_RESTART(pt)

Restart the protothread.

• #definePT_EXIT(pt)

Exit the protothread.

Calling a protothread

• #definePT_SCHEDULE(f)

Schedule a protothread.

Yielding from a protothread

• #definePT_YIELD(pt)

Yield from the current protothread.

• #definePT_YIELD_UNTIL(pt, cond)

Yield from the protothread until a condition occurs.

Defines

• #definePT_WAITING 0
• #definePT_EXITED1
• #definePT_ENDED2
• #definePT_YIELDED3

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.50 core/sys/pt.h File Reference 275

9.50.2 Define Documentation

9.50.2.1 #define PT_BEGIN(pt)

Declare the start of a protothread inside the C function implementing the protothread.

This macro is used to declare the starting point of a protothread. It should be placed at the start of the func-
tion in which the protothread runs. All C statements above thePT_BEGIN()invokation will be executed
each time the protothread is scheduled.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 115 of file pt.h.

Referenced by PT_THREAD().

9.50.2.2 #define PT_END(pt)

Declare the end of a protothread.

This macro is used for declaring that a protothread ends. It must always be used together with a matching
PT_BEGIN()macro.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 127 of file pt.h.

Referenced by PT_THREAD().

9.50.2.3 #define PT_EXIT(pt)

Exit the protothread.

This macro causes the protothread to exit. If the protothread was spawned by another protothread, the
parent protothread will become unblocked and can continue to run.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 246 of file pt.h.

9.50.2.4 #define PT_INIT(pt)

Initialize a protothread.

Initializes a protothread. Initialization must be done prior to starting to execute the protothread.

Parameters:
pt A pointer to the protothread control structure.

See also:
PT_SPAWN()

Definition at line 80 of file pt.h.

Referenced by process_start(), PT_THREAD(), and tr1001_init().

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.50 core/sys/pt.h File Reference 276

9.50.2.5 #define PT_RESTART(pt)

Restart the protothread.

This macro will block and cause the running protothread to restart its execution at the place of thePT_-
BEGIN() call.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 229 of file pt.h.

Referenced by PT_THREAD().

9.50.2.6 #define PT_SCHEDULE(f)

Schedule a protothread.

This function shedules a protothread. The return value of the function is non-zero if the protothread is
running or zero if the protothread has exited.

Parameters:
f The call to the C function implementing the protothread to be scheduled

Definition at line 271 of file pt.h.

9.50.2.7 #define PT_SPAWN(pt, child, thread)

Spawn a child protothread and wait until it exits.

This macro spawns a child protothread and waits until it exits. The macro can only be used within a
protothread.

Parameters:
pt A pointer to the protothread control structure.

child A pointer to the child protothread’s control structure.

thread The child protothread with arguments

Definition at line 206 of file pt.h.

9.50.2.8 #define PT_THREAD(name_args)

Declaration of a protothread.

This macro is used to declare a protothread. All protothreads must be declared with this macro.

Parameters:
name_argsThe name and arguments of the C function implementing the protothread.

Examples:
example-psock-server.c.

Definition at line 100 of file pt.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.50 core/sys/pt.h File Reference 277

9.50.2.9 #define PT_WAIT_THREAD(pt, thread)

Block and wait until a child protothread completes.

This macro schedules a child protothread. The current protothread will block until the child protothread
completes.

Note:
The child protothread must be manually initialized with thePT_INIT() function before this function is
used.

Parameters:
pt A pointer to the protothread control structure.

thread The child protothread with arguments

See also:
PT_SPAWN()

Definition at line 192 of file pt.h.

9.50.2.10 #define PT_WAIT_UNTIL(pt, condition)

Block and wait until condition is true.

This macro blocks the protothread until the specified condition is true.

Parameters:
pt A pointer to the protothread control structure.

condition The condition.

Definition at line 148 of file pt.h.

Referenced by PT_THREAD().

9.50.2.11 #define PT_WAIT_WHILE(pt, cond)

Block and wait while condition is true.

This function blocks and waits while condition is true. SeePT_WAIT_UNTIL().

Parameters:
pt A pointer to the protothread control structure.

cond The condition.

Definition at line 167 of file pt.h.

Referenced by PT_THREAD().

9.50.2.12 #define PT_YIELD(pt)

Yield from the current protothread.

This function will yield the protothread, thereby allowing other processing to take place in the system.

Parameters:
pt A pointer to the protothread control structure.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.51 core/sys/service.c File Reference 278

Definition at line 290 of file pt.h.

Referenced by PT_THREAD().

9.50.2.13 #define PT_YIELD_UNTIL(pt, cond)

Yield from the protothread until a condition occurs.

Parameters:
pt A pointer to the protothread control structure.

cond The condition.

This function will yield the protothread, until the specified condition evaluates to true.

Definition at line 310 of file pt.h.

9.51 core/sys/service.c File Reference

9.51.1 Detailed Description

Implementation of the Contiki service mechanism.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileservice.c.

#include <string.h >

#include "contiki.h"

Functions

• void service_register(structservice∗s)
• void service_remove(structservice∗s)
• service∗ service_find(const char∗name)

9.52 core/sys/service.h File Reference

9.52.1 Detailed Description

Header file for the Contiki service mechanism.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileservice.h.

#include "contiki.h"

Data Structures

• structservice

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.52 core/sys/service.h File Reference 279

Service declaration and defition

• #defineSERVICE_INTERFACE(name, interface)

Define the name and interface of a service.

• #defineSERVICE(name, service_name,)

Define an implementation of a service interface.

Calling a service

• #defineSERVICE_CALL(service_name, function)

Call a function from a specified service, if it is registered.

Service registration and removal

• #defineSERVICE_REGISTER(name)

Register a service.

• #defineSERVICE_REMOVE(service_name)

Remove a service.

Defines

• #defineSERVICE_EXISTS(service_name) (service_find(service_name##_name) != NULL)
• #defineSERVICE_FIND(service_name)

Find service.

Functions

• void service_register(structservice∗s)
• void service_remove(structservice∗s)
• service∗ service_find(const char∗name)

9.52.2 Define Documentation

9.52.2.1 #define SERVICE_CALL(service_name, function)

Call a function from a specified service, if it is registered.

Parameters:
service_nameThe name of the service that is to be called.

function The function that is to be called. This is a full function call, including parameters.

Examples:
example-use-service.c.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

9.53 core/sys/timer.c File Reference 280

Definition at line 148 of file service.h.

Referenced by tcpip_output().

9.53 core/sys/timer.c File Reference

9.53.1 Detailed Description

Timer library implementation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file timer.c.

#include "contiki-conf.h"

#include "sys/clock.h"

#include "sys/timer.h"

Functions

• void timer_set(structtimer∗t, clock_time_t interval)

Set a timer.

• void timer_reset(structtimer∗t)
Reset the timer with the same interval.

• void timer_restart(structtimer∗t)
Restart the timer from the current point in time.

• int timer_expired(structtimer∗t)
Check if a timer has expired.

9.54 core/sys/timer.h File Reference

9.54.1 Detailed Description

Timer library header file.

Author:
Adam Dunkels<adam@sics.se >

Definition in file timer.h.

#include "sys/clock.h"

Data Structures

• structtimer

A timer.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.55 platform/esb/dev/beep.h File Reference 281

Functions

• void timer_set(structtimer∗t, clock_time_t interval)

Set a timer.

• void timer_reset(structtimer∗t)
Reset the timer with the same interval.

• void timer_restart(structtimer∗t)
Restart the timer from the current point in time.

• int timer_expired(structtimer∗t)
Check if a timer has expired.

9.55 platform/esb/dev/beep.h File Reference

9.55.1 Detailed Description

Interface to the beeper.

Author:
Adam Dunkels<adam@sics.se >

Definition in filebeep.h.

#include "sys/clock.h"

Defines

• #defineBEEP_ON1
• #defineBEEP_OFF0
• #defineBEEP_ALARM11
• #defineBEEP_ALARM22

Functions

• void beep_beep(int len)

Beep for a specified time.

• void beep_alarm(int alarmmode, int len)

Beep an alarm for a specified time.

• void beep(void)

Produces a quick click-like beep.

• void beep_down(int len)

A beep with a pitch-bend down.

• void beep_on(void)

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.56 platform/esb/dev/eeprom.c File Reference 282

Turn the beeper on.

• void beep_off(void)

Turn the beeper off.

• void beep_spinup(void)

Produce a sound similar to a hard-drive spinup.

• void beep_long(clock_time_t len)

Beep for a long time (seconds).

9.56 platform/esb/dev/eeprom.c File Reference

9.56.1 Detailed Description

EEPROM functions.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileeeprom.c.

#include <msp430x14x.h >

#include <io.h >

#include "dev/eeprom.h"

Defines

• #defineEEPROMADDRESS(0x00)
• #defineEEPROMPAGEMASK(0x7F)
• #defineSDA_HIGH(P5OUT|= 0x04)

EEPROM data line high.

• #defineSDA_LOW(P5OUT &= 0xFB)

EEPROM data line low.

• #defineSCL_HIGH(P5OUT|= 0x08)

EEPROM clock line high.

• #defineSCL_LOW(P5OUT &= 0xF7)

EEPROM clock line low.

Functions

• void eeprom_read(unsigned short addr, unsigned char∗buf, int size)

Read data from the EEPROM.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.57 platform/esb/dev/rs232.c File Reference 283

• void eeprom_write(unsigned short addr, unsigned char∗buf, int size)

Write a buffer into EEPROM.

9.57 platform/esb/dev/rs232.c File Reference

9.57.1 Detailed Description

RS232 communication device driver for the MSP430.

Author:
Adam Dunkels<adam@sics.se >

This file contains an RS232 device driver for the MSP430 microcontroller.

Definition in file rs232.c.

#include <io.h >

#include <signal.h >

#include <string.h >

#include "contiki-esb.h"

Functions

• interrupt(UART1RX_VECTOR)
• void rs232_init(void)

Initialize the RS232 module.

• void rs232_send(char c)

Print a character on RS232.

• void rs232_set_speed(unsigned char speed)

Configure the speed of the RS232 hardware.

• void rs232_print(char∗text)

Print a text string on RS232.

• void rs232_set_input(int(∗f)(unsigned char))

Set an input handler for incoming RS232 data.

• void slip_arch_writeb(unsigned char c)

9.58 platform/esb/dev/rs232.h File Reference

9.58.1 Detailed Description

Header file for MSP430 RS232 driver.

Author:
Adam Dunkels<adam@sics.se >

Definition in file rs232.h.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.59 platform/esb/dev/tr1001.c File Reference 284

Defines

• #defineRS232_192001
• #defineRS232_384002
• #defineRS232_576003
• #defineRS232_1152004

Functions

• void rs232_init(void)

Initialize the RS232 module.

• void rs232_set_input(int(∗f)(unsigned char))

Set an input handler for incoming RS232 data.

• void rs232_set_speed(unsigned char speed)

Configure the speed of the RS232 hardware.

• void rs232_print(char∗text)

Print a text string on RS232.

• void rs232_send(char c)

Print a character on RS232.

9.59 platform/esb/dev/tr1001.c File Reference

9.59.1 Detailed Description

Device driver and packet framing for the RFM-TR1001 radio module.

Author:
Adam Dunkels<adam@sics.se >

This file implements a device driver for the RFM-TR1001 radio tranciever.

Definition in file tr1001.c.

#include "contiki-esb.h"

#include "lib/me.h"

#include "lib/crc16.h"

#include "net/tr1001-drv.h"

#include <io.h >

#include <signal.h >

#include <string.h >

#include <stdio.h >

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

mailto:adam@sics.se

10 Contiki 2.x Example Documentation 285

Defines

• #defineRXSTATE_READY0
• #defineRXSTATE_RECEVING1
• #defineRXSTATE_FULL2
• #defineSYNCH10x3c
• #defineSYNCH20x03
• #defineRXBUFSIZEUIP_BUFSIZE
• #defineTR1001_HDRLENsizeof(struct tr1001_hdr)
• #defineBUF ((uip_tcpip_hdr∗)&uip_buf[UIP_LLH_LEN])
• #defineOFF0
• #defineON 1
• #defineNUM_SYNCHBYTES4
• #defineLOG()
• #definePACKET_DROPPED(bytes)
• #definePACKET_ACCEPTED()

Functions

• void radio_off(void)

Turn radio off.

• void radio_on(void)

Turn radio on.

• void tr1001_set_txpower(unsigned char p)
• void tr1001_init(void)
• interrupt(UART0RX_VECTOR)
• PT_THREAD(tr1001_default_rxhandler_pt(unsigned char incoming_byte))
• u8_ttr1001_send(u8_t∗packet, u16_t len)
• unsigned shorttr1001_poll(void)
• void tr1001_set_speed(unsigned char speed)
• unsigned shorttr1001_sstrength(void)

Variables

• unsigned chartr1001_rxbuf[RXBUFSIZE]
• volatile unsigned chartr1001_rxstate= RXSTATE_READY

10 Contiki 2.x Example Documentation

10.1 code-style.c

/**
* \defgroup coding-style Coding style
*
* This is how a Doxygen module is documented - start with a \defgroup
* Doxygen keyword at the beginning of the file to define a module,
* and use the \addtogroup Doxygen keyword in all other files that
* belong to the same module. Typically, the \defgroup is placed in

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.1 code-style.c 286

* the .h file and \addtogroup in the .c file.
*
* @{
*/

/**
* \file
* A brief description of what this file is.
* \author
* Adam Dunkels <adam@sics.se>
*
* Every file that is part of a documented module has to have
* a \file block, else it will not show up in the Doxygen
* "Modules" * section.
*/

/* Single line comments look like this. */

/*
* Multi-line comments look like this. Comments should prefferably be
* full sentences, filled to look like real paragraphs.
*/

#include "contiki.h"

/*
* Make sure that non-global variables are all maked with the static
* keyword. This keeps the size of the symbol table down.
*/

static int flag;

/*
* All variables and functions that are visible outside of the file
* should have the module name prepended to them. This makes it easy
* to know where to look for function and variable definitions.
*
* Put dividers (a single-line comment consisting only of dashes)
* between functions.
*/

/*---*/
/**

* \brief Use Doxygen documentation for functions.
* \param c Briefly describe all parameters.
* \return Briefly describe the return value.
* \retval 0 Functions that return a few specified values
* \retval 1 can use the \retval keyword instead of \return.
*
* Put a longer description of what the function does
* after the preamble of Doxygen keywords.
*
* This template should always be used to document
* functions. The text following the introduction is used
* as the function’s documentation.
*
* Function prototypes have the return type on one line,
* the name and arguments on one line (with no space
* between the name and the first parenthesis), followed
* by a single curly bracket on its own line.
*/

void
code_style_example_function(void)
{

/*
* Local variables should always be declared at the start of the
* function.
*/

int i; /* Use short variable names for loop

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.2 example-list.c 287

counters. */

/*
* There should be no space between keywords and the first
* parenthesis. There should be spaces around binary operators, no
* spaces between a unary operator and its operand.
*
* Curly brackets following for(), if(), do, and case() statements
* should follow the statement on the same line.
*/

for(i = 0; i < 10; ++i) {
/*

* Always use full blocks (curly brackets) after if(), for(), and
* while() statements, even though the statement is a single line
* of code. This makes the code easier to read and modifications
* are less error prone.
*/

if(i == c) {
return c; /* No parentesis around return values. */

} else { /* The else keyword is placed inbetween
curly brackers, always on its own line. */

c++;
}

}
}
/*---*/
/*

* Static (non-global) functions do not need Doxygen comments. The
* name should not be prepended with the module name - doing so would
* create confusion.
*/

static void
an_example_function(void)
{

}
/*---*/

/* The following stuff ends the \defgroup block at the beginning of
the file: */

/** @} */

10.2 example-list.c

#include "list.h"

struct example_list_struct {
struct *next;
int number;

};

LIST(example_list);

void
example_function(void)
{

struct example_list_struct *s;
struct example_list_struct element1, element2;

list_init(example_list);

list_add(example_list, &element1);
list_add(example_list, &element2);

for(s = list_head(example_list);

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.3 example-packet-service.c 288

s != NULL;
s = s->next) {

printf("List element number %d\n", s->number);
}

}

10.3 example-packet-service.c

/*
* This is an example of how to write a network device driver ("packet
* service") for Contiki. A packet service is a regular Contiki
* service that does two things:
* # Checks for incoming packets and delivers those to the TCP/IP stack
* # Provides an output function that transmits packets
*
* The output function is registered with the Contiki service
* mechanism, whereas incoming packets must be checked inside a
* Contiki process. We use the same process for checking for incoming
* packets and for registering the service.
*
* NOTE: This example does not work with the uip-fw module (packet
* forwarding with multiple interfaces). It only works with a single
* interface.
*/

/*
* We include the "contiki-net.h" file to get all the network
* functions.
*/

#include "contiki-net.h"

/*---*/
/*

* We declare the process that we use to register the service, and to
* check for incoming packets.
*/

PROCESS(example_packet_service_process, "Example packet service process");
/*---*/
/*

* This is the poll handler function in the process below. This poll
* handler function checks for incoming packets and delivers them to
* the TCP/IP stack.
*/

static void
pollhandler(void)
{

/*
* We assume that we have some hardware device that notifies us when
* a new packet has arrived. We also assume that we have a function
* that pulls out the new packet (here called
* check_and_copy_packet()) and puts it in the uip_buf[] buffer. The
* function returns the length of the incoming packet, and we store
* it in the global uip_len variable. If the packet is longer than
* zero bytes, we hand it over to the TCP/IP stack.
*/

uip_len = check_and_copy_packet();

/*
* The function tcpip_input() delivers the packet in the uip_buf[]
* buffer to the TCP/IP stack.
*/

if(uip_len > 0) {
tcpip_input();

}

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.3 example-packet-service.c 289

/*
* Now we’ll make sure that the poll handler is executed
* repeatedly. We do this by calling process_poll() with this
* process as its argument.
*
* In many cases, the hardware will cause an interrupt to be
* executed when a new packet arrives. For such hardware devices,
* the interrupt handler calls process_poll() (which is safe to use
* in an interrupt context) instead.
*/

process_poll(&example_packet_service_process);
}
/*---*/
/*

* Next, we define the function that transmits packets. This function
* is called from the TCP/IP stack when a packet is to be
* transmitted. The packet is located in the uip_buf[] buffer, and the
* length of the packet is in the uip_len variable.
*/

static void
send_packet(void)
{

let_the_hardware_send_the_packet(uip_buf, uip_len);
}
/*---*/
/*

* Now we declare the service. We call the service
* example_packet_service because of the name of this file. The
* service should be an instance of the "packet service" service, so
* we give packet_service as the second argument. Finally we give our
* send_packet() function as the last argument, because of how the
* packet_service interface is defined.
*
* We’ll register this service with the Contiki system in the process
* defined below.
*/

SERVICE(example_packet_service, packet_service, { send_packet });
/*---*/
/*

* Finally, we define the process that does the work.
*/

PROCESS_THREAD(example_packet_service_process, ev, data)
{

/*
* This process has a poll handler, so we declare it here. Note that
* the PROCESS_POLLHANDLER() macro must come before the
* PROCESS_BEGIN() macro.
*/

PROCESS_POLLHANDLER(pollhandler());

/*
* The process begins here.
*/

PROCESS_BEGIN();

/*
* We start with initializing the hardware.
*/

initialize_the_hardware();

/*
* Register the service. This will cause any other instances of the
* same service to be removed.
*/

SERVICE_REGISTER(example_packet_service);

/*

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.4 example-pollhandler.c 290

* And we wait for either the process to exit, or for the service to
* be removed (by someone else).
*/

PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_EXIT ||
ev == PROCESS_EVENT_SERVICE_REMOVED);

/*
* And we always end with explicitly removing the service.
*/

SERVICE_REMOVE(example_packet_service);

/*
* Here endeth the process.
*/

PROCESS_END();
}
/*---*/

10.4 example-pollhandler.c

#include "contiki.h"

PROCESS(example_pollhandler, "Pollhandler example");

static void
exithandler(void)
{

printf("Process exited\n");
}

static void
pollhandler(void)
{

printf("Process polled\n");
}

PROCESS_THREAD(example_pollhandler, ev, data)
{

PROCESS_POLLHANDLER(pollhandler());
PROCESS_EXITHANDLER(exithandler());

PROCESS_BEGIN();

while(1) {
PROCESS_WAIT_EVENT();

}

PROCESS_END();
}

10.5 example-program.c

/*
* This file contains an example of how a Contiki program looks.
*
* The program opens a UDP broadcast connection and sends one packet
* every second.
*/

#include "contiki.h"
#include "contiki-net.h"

/*

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.5 example-program.c 291

* All Contiki programs must have a process, and we declare it here.
*/

PROCESS(example_program_process, "Example process");

/*
* To make the program send a packet once every second, we use an
* event timer (etimer).
*/

static struct etimer timer;

/*---*/
/*

* Here we implement the process. The process is run whenever an event
* occurs, and the parameters "ev" and "data" will we set to the event
* type and any data that may be passed along with the event.
*/

PROCESS_THREAD(example_program_process, ev, data)
{

/*
* Declare the UDP connection. Note that this *MUST* be declared
* static, or otherwise the contents may be destroyed. The reason
* for this is that the process runs as a protothread, and
* protothreads do not support stack variables.
*/

static struct uip_udp_conn *c;

/*
* A process thread starts with PROCESS_BEGIN() and ends with
* PROCESS_END().
*/

PROCESS_BEGIN();

/*
* We create the UDP connection to port 4321. We don’t want to
* attach any special data to the connection, so we pass it a NULL
* parameter.
*/

c = udp_broadcast_new(HTONS(4321), NULL);

/*
* Loop for ever.
*/

while(1) {

/*
* We set a timer that wakes us up once every second.
*/

etimer_set(&timer, CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

/*
* Now, this is a the tricky bit: in order for us to send a UDP
* packet, we must call upon the uIP TCP/IP stack process to call
* us. (uIP works under the Hollywood principle: "Don’t call us,
* we’ll call you".) We use the function tcpip_poll_udp() to tell
* uIP to call us, and then we wait for the uIP event to come.
*/

tcpip_poll_udp(c);
PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

/*
* We can now send our packet.
*/

uip_send("Hello", 5);

/*
* We’re done now, so we’ll just loop again.

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.6 example-psock-server.c 292

*/
}

/*
* The process ends here. Even though our program sits is a while(1)
* loop, we must put the PROCESS_END() at the end of the process, or
* else the program won’t compile.
*/

PROCESS_END();
}
/*---*/

10.6 example-psock-server.c

/*
* This is a small example of how to write a TCP server using
* Contiki’s protosockets. It is a simple server that accepts one line
* of text from the TCP connection, and echoes back the first 10 bytes
* of the string, and then closes the connection.
*
* The server only handles one connection at a time.
*
*/

#include <string.h>

/*
* We include "contiki-net.h" to get all network definitions and
* declarations.
*/

#include "contiki-net.h"

/*
* We define one protosocket since we’ve decided to only handle one
* connection at a time. If we want to be able to handle more than one
* connection at a time, each parallell connection needs its own
* protosocket.
*/

static struct psock ps;

/*
* We must have somewhere to put incoming data, and we use a 10 byte
* buffer for this purpose.
*/

static char buffer[10];

/*---*/
/*

* A protosocket always requires a protothread. The protothread
* contains the code that uses the protosocket. We define the
* protothread here.
*/

static
PT_THREAD(handle_connection(struct psock *p))
{

/*
* A protosocket’s protothread must start with a PSOCK_BEGIN(), with
* the protosocket as argument.
*
* Remember that the same rules as for protothreads apply: do NOT
* use local variables unless you are very sure what you are doing!
* Local (stack) variables are not preserved when the protothread
* blocks.
*/

PSOCK_BEGIN(p);

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.6 example-psock-server.c 293

/*
* We start by sending out a welcoming message. The message is sent
* using the PSOCK_SEND_STR() function that sends a null-terminated
* string.
*/

PSOCK_SEND_STR(p, "Welcome, please type something and press return.\n");

/*
* Next, we use the PSOCK_READTO() function to read incoming data
* from the TCP connection until we get a newline character. The
* number of bytes that we actually keep is dependant of the length
* of the input buffer that we use. Since we only have a 10 byte
* buffer here (the buffer[] array), we can only remember the first
* 10 bytes received. The rest of the line up to the newline simply
* is discarded.
*/

PSOCK_READTO(p, ’\n’);

/*
* And we send back the contents of the buffer. The PSOCK_DATALEN()
* function provides us with the length of the data that we’ve
* received. Note that this length will not be longer than the input
* buffer we’re using.
*/

PSOCK_SEND_STR(p, "Got the following data: ");
PSOCK_SEND(p, buffer, PSOCK_DATALEN(p));
PSOCK_SEND_STR(p, "Good bye!\r\n");

/*
* We close the protosocket.
*/

PSOCK_CLOSE(p);

/*
* And end the protosocket’s protothread.
*/

PSOCK_END(p);
}
/*---*/
/*

* We declare the process.
*/

PROCESS(example_psock_server_process, "Example protosocket server");
/*---*/
/*

* The definition of the process.
*/

PROCESS_THREAD(example_psock_server_process, ev, data)
{

/*
* The process begins here.
*/

PROCESS_BEGIN();

/*
* We start with setting up a listening TCP port. Note how we’re
* using the HTONS() macro to convert the port number (1010) to
* network byte order as required by the tcp_listen() function.
*/

tcp_listen(HTONS(1010));

/*
* We loop for ever, accepting new connections.
*/

while(1) {

/*

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.7 example-service.c 294

* We wait until we get the first TCP/IP event, which probably
* comes because someone connected to us.
*/

PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

/*
* If a peer connected with us, we’ll initialize the protosocket
* with PSOCK_INIT().
*/

if(uip_connected()) {

/*
* The PSOCK_INIT() function initializes the protosocket and
* binds the input buffer to the protosocket.
*/

PSOCK_INIT(&ps, buffer, sizeof(buffer));

/*
* We loop until the connection is aborted, closed, or times out.
*/

while(!(uip_aborted() || uip_closed() || uip_timedout())) {

/*
* We wait until we get a TCP/IP event. Remember that we
* always need to wait for events inside a process, to let
* other processes run while we are waiting.
*/

PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

/*
* Here is where the real work is taking place: we call the
* handle_connection() protothread that we defined above. This
* protothread uses the protosocket to receive the data that
* we want it to.
*/

handle_connection(&ps);
}

}
}

/*
* We must always declare the end of a process.
*/

PROCESS_END();
}
/*---*/

10.7 example-service.c

/*
* This file is an example of how to implement a service in
* Contiki. The header file example-service.h defines a service called
* "example_service", which we implement in this file.
*
* This example shows how to define an instance of a service, and how
* to write the service’s controlling process.
*
* See the file example-use-service.c for an example of how to call a
* service.
*/

#include <stdio.h>

#include "example-service.h"
#include "contiki.h"

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.7 example-service.c 295

/*---*/
/*

* We start by implementing all the functions that the service
* offers. In this case, there is only a single function (called
* example_function()) and we implement it here. We give it the name
* example() and declare it with the "static" keyword to keep the
* scope local to this file.
*/

static void
example(void) {

printf("Example service called\n");
}
/*---*/
/*

* This is the instantiation of the service called
* "example_service". The service interface is defined in the header
* file example-service.h.
*
* This statement defines the name of this implementation of the
* service - example_service_implementation - and defines the
* functions that actually implement the functions offered by the
* service. In this example, the service consists of a single function
* called "example_function()". We implement this function in the
* function called "example()" defined above.
*
*/

SERVICE(example_service_implementation, /* The name of this instance
of the service - used with
SERVICE_REGISTER(). */

example_service, /* The name of the serivce
that is instantiated. */

{ example }); /* The list of functions
required by the
service. In this case, we
only have one function. */

/*
* All services needs a controlling process. The controlling process
* registers the service with the system when it starts, and is also
* notified if the service is removed or replaced.
*
* We simply call the process "example_service_process" and gives it a
* similar textual name.
*/

PROCESS(example_service_process, "Example service process");

/*
* For this example, we use a timer to remove the service after a
* certain time. We declare the timer here.
*/

static struct etimer timer;

/*
* Finally, we implement the controlling process.
*/

PROCESS_THREAD(example_service_process, ev, data)
{

/*
* A process thread starts with PROCESS_BEGIN() and ends with
* PROCESS_END().
*/

PROCESS_EXITHANDLER(goto exit);
PROCESS_BEGIN();

/*
* We register the service instance with a SERVICE_REGISTER()

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.8 example-service.h 296

* statement.
*/

printf("Registering example service\n");
SERVICE_REGISTER(example_service_implementation);

/*
* We set a timer for four seconds and wait for it to expire - or
* for the process to receive an event which requests it to exit.
*
* The only purpose for the timer is to demonstrate how a service is
* removed - it is not something that is commonly done.
*/

etimer_set(&timer, 4 * CLOCK_SECOND);
PROCESS_YIELD_UNTIL(ev == PROCESS_EVENT_SERVICE_REMOVED ||

etimer_expired(&timer));

/*
* And we remove the service before the process ends. This is a
* *very* important step - if the process exits and is unloaded
* without first removing its services, the system may crash!
*/

printf("Removing example service\n");

/*
* And finally the process ends.
*/

exit:
SERVICE_REMOVE(example_service_implementation);
PROCESS_END();

}
/*---*/

10.8 example-service.h

/*
* This file is an example of how to define a service in Contiki. The
* example shows how to define a service interface, and how to give
* the service a name.
*/

#ifndef __EXAMPLE_SERVICE_H__
#define __EXAMPLE_SERVICE_H__

#include "sys/service.h"

/*
* This is how we define the service interface, and give the service a
* name. The name of this particular service is "example_service" and
* the interface consists of a single function, called
* example_function().
*/

SERVICE_INTERFACE(example_service,
{

void (* example_function)(void);
/* More functions can be added here, line by line. */

});

/*
* We must also give the service a textual name. We do this by using a
* special #define statment - we define a macro with the same name as
* the service, but postfixed with "_name".
*
* The textual name is used when looking up services. The name must be
* unique within the system.
*/

#define example_service_name "Example service"

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.9 example-use-service.c 297

#endif /* __EXAMPLE_SERVICE_H__ */

10.9 example-use-service.c

/*
* This file contains an example of how to call a service.
*
* This program implements a process that calls the service defined in
* example-service.h every second.
*/

#include <stdio.h>

#include "contiki.h"

/*
* We must include the header file for the service.
*/

#include "example-service.h"

/*
* All Contiki programs must have a process, and we declare it here.
*/

PROCESS(example_use_service_process, "Use example");

/*
* The program is to call the service once every second, so we use an
* event timer in order to run every second.
*/

static struct etimer timer;

/*---*/
/*

* Here we implement the process.
*/

PROCESS_THREAD(example_use_service_process, ev, data)
{

/*
* A process thread starts with PROCESS_BEGIN() and ends with
* PROCESS_END().
*/

PROCESS_BEGIN();

/*
* We loop for ever, calling the service once every second.
*/

while(1) {

/*
* We set a timer that wakes us up once every second.
*/

etimer_set(&timer, CLOCK_SECOND);
PROCESS_YIELD_UNTIL(etimer_expired(&timer));

/*
* We call the service. If the service is not registered, the
* SERVICE_CALL() statement does nothing. If we need to know if
* the service exists, we can use the SERVICE_FIND() function.
*/

printf("use example: calling example\n");
SERVICE_CALL(example_service, example_function());

}

/*
* And finally the process ends.
*/

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

10.9 example-use-service.c 298

PROCESS_END();
}
/*---*/

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

Index
active

ctk_window,193
Appication specific configurations,138
apps/ Directory Reference,177
apps/program-handler/ Directory Reference,181
apps/program-handler/program-handler.c,204
Architecture specific functionality for the ELF

loader.,71
Architecture support for multi-threading,64
arg

arg_alloc,52
arg_free,52

arg_alloc
arg,52

arg_free
arg,52

Argument buffer,51
ARP configuration options,136

beep
beeper,172

beep_alarm
beeper,172

beep_beep
beeper,172

beep_down
beeper,173

beep_long
beeper,173

beep_off
beeper,173

beep_on
beeper,173

beep_spinup
beeper,173

beeper
beep,172
beep_alarm,172
beep_beep,172
beep_down,173
beep_long,173
beep_off,173
beep_on,173
beep_spinup,173

Beeper interface,171

cfs
cfs_close,78
cfs_closedir,78
cfs_open,78
cfs_opendir,78

CFS_READ,77
cfs_read,79
cfs_readdir,79
cfs_seek,79
CFS_WRITE,77
cfs_write,80

cfs_close
cfs,78

cfs_closedir
cfs,78

cfs_open
cfs,78

cfs_opendir
cfs,78

CFS_READ
cfs,77

cfs_read
cfs,79

cfs_readdir
cfs,79

cfs_seek
cfs,79

CFS_WRITE
cfs,77

cfs_write
cfs,80

clock
clock_init,60
clock_time,60

Clock library,59
clock_init

clock,60
clock_time

clock,60
Configuration options for uIP,130
Contiki platforms,17
Contiki processes,42
Contiki system,12
core/ Directory Reference,178
core/cfs/ Directory Reference,177
core/cfs/cfs.h,206
core/ctk/ Directory Reference,178
core/ctk/ctk-draw.h,207
core/ctk/ctk.c,208
core/ctk/ctk.h,211
core/dev/ Directory Reference,179
core/dev/eeprom.h,216
core/dev/radio.h,217
core/lib/ Directory Reference,179
core/lib/crc16.c,217

INDEX 300

core/lib/crc16.h,218
core/lib/ctk-textedit.c,218
core/lib/ctk-textedit.h,219
core/lib/list.c,221
core/lib/list.h,222
core/lib/me.c,223
core/lib/me.h,224
core/lib/memb.c,224
core/lib/memb.h,225
core/lib/mmem.c,226
core/lib/mmem.h,226
core/lib/petsciiconv.h,227
core/loader/ Directory Reference,180
core/loader/elfloader-arch.h,227
core/loader/elfloader-tmp.h,228
core/net/ Directory Reference,180
core/net/psock.h,229
core/net/resolv.c,231
core/net/resolv.h,232
core/net/tcpip.h,233
core/net/uip-fw.c,238
core/net/uip-fw.h,239
core/net/uip-split.h,240
core/net/uip.c,240
core/net/uip.h,243
core/net/uip_arp.c,248
core/net/uip_arp.h,249
core/net/uiplib.h,250
core/net/uipopt.h,251
core/sys/ Directory Reference,181
core/sys/arg.c,253
core/sys/cc.h,253
core/sys/dsc.h,254
core/sys/etimer.c,255
core/sys/etimer.h,256
core/sys/lc-addrlabels.h,257
core/sys/lc-switch.h,257
core/sys/lc.h,258
core/sys/loader.h,259
core/sys/mt.c,260
core/sys/mt.h,261
core/sys/process.c,262
core/sys/process.h,264
core/sys/pt-sem.h,271
core/sys/pt.h,272
core/sys/service.c,277
core/sys/service.h,277
core/sys/timer.c,279
core/sys/timer.h,279
CPU architecture configuration,138
crc16

crc16_add,166
crc16_add

crc16,166

ctk
ctk_dialog_open,98
ctk_menu_add,98
ctk_menu_remove,99
ctk_mode_get,99
ctk_mode_set,99
ctk_window_clear,99
ctk_window_close,100
ctk_window_new,100
ctk_window_redraw,100

CTK application functions,80
CTK device driver functions,103
CTK events,101
CTK graphical user interface,96
ctk-textedit.c

ctk_textedit_add,219
ctk_textedit_eventhandler,219

ctk-textedit.h
CTK_TEXTEDIT, 220
ctk_textedit_add,220
ctk_textedit_eventhandler,220

ctk_arch_key_t
ctkdraw,106

ctk_bitmap,183
CTK_BUTTON

ctkappfunc,85
ctk_button,183
ctk_button_set_text

ctkappfunc,85
ctk_desktop,183
ctk_desktop_height

ctkappfunc,90
ctk_desktop_redraw

ctkappfunc,90
ctk_desktop_width

ctkappfunc,90
ctk_dialog_new

ctkappfunc,91
ctk_dialog_open

ctk, 98
ctkappfunc,91

ctk_draw_clear
ctkdraw,106

ctk_draw_clear_window
ctkdraw,106

ctk_draw_dialog
ctkdraw,106

ctk_draw_init
ctkdraw,107

ctk_draw_widget
ctkdraw,107

ctk_draw_window
ctkdraw,107

CTK_HYPERLINK

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 301

ctkappfunc,85
ctk_hyperlink,184
CTK_ICON

ctkappfunc,85
ctk_icon,185
CTK_ICON_ADD

ctkappfunc,86
ctk_icon_add

ctkappfunc,91
CTK_LABEL

ctkappfunc,86
ctk_label,185
ctk_label_set_height

ctkappfunc,86
ctk_label_set_text

ctkappfunc,87
ctk_menu,186

titlelen,186
ctk_menu_add

ctk, 98
ctkappfunc,91

ctk_menu_new
ctkappfunc,92

ctk_menu_remove
ctk, 99
ctkappfunc,92

ctk_menuitem,186
ctk_menuitem_add

ctkappfunc,92
ctk_menus,187

open,187
ctk_mode_get

ctk, 99
ctkappfunc,93

ctk_mode_set
ctk, 99
ctkappfunc,93

CTK_SEPARATOR
ctkappfunc,87

ctk_separator,187
ctk_signal_hyperlink_activate

ctkappfunc,95
ctkevents,101

ctk_signal_keypress
ctkappfunc,95
ctkevents,102

ctk_signal_menu_activate
ctkappfunc,95
ctkevents,102

ctk_signal_pointer_button
ctkappfunc,95
ctkevents,102

ctk_signal_pointer_move
ctkappfunc,96

ctkevents,102
ctk_signal_widget_activate

ctkappfunc,96
ctkevents,102

ctk_signal_widget_select
ctkappfunc,96
ctkevents,102

ctk_signal_window_close
ctkappfunc,96
ctkevents,103

CTK_TEXTEDIT
ctk-textedit.h,220

ctk_textedit,188
ctk_textedit_add

ctk-textedit.c,219
ctk-textedit.h,220

ctk_textedit_eventhandler
ctk-textedit.c,219
ctk-textedit.h,220

CTK_TEXTENTRY
ctkappfunc,87

ctk_textentry,188
CTK_TEXTENTRY_CLEAR

ctkappfunc,88
ctk_textmap,188
ctk_widget,189
CTK_WIDGET_ADD

ctkappfunc,88
ctk_widget_add

ctkappfunc,93
ctk_widget_bitmap,190
ctk_widget_button,190
CTK_WIDGET_FOCUS

ctkappfunc,88
ctk_widget_hyperlink,190
ctk_widget_icon,191
ctk_widget_label,191
CTK_WIDGET_REDRAW

ctkappfunc,88
ctk_widget_redraw

ctkappfunc,93
CTK_WIDGET_SET_WIDTH

ctkappfunc,89
CTK_WIDGET_SET_XPOS

ctkappfunc,89
CTK_WIDGET_SET_YPOS

ctkappfunc,89
ctk_widget_textentry,191
CTK_WIDGET_TYPE

ctkappfunc,89
CTK_WIDGET_XPOS

ctkappfunc,89
CTK_WIDGET_YPOS

ctkappfunc,90

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 302

ctk_window,191
active,193
inactive,193
owner,193
title, 193

ctk_window_clear
ctk, 99
ctkappfunc,94

ctk_window_close
ctk, 100
ctkappfunc,94

ctk_window_new
ctk, 100
ctkappfunc,94

ctk_window_open
ctkappfunc,94

ctk_window_redraw
ctk, 100
ctkappfunc,95

ctkappfunc
CTK_BUTTON,85
ctk_button_set_text,85
ctk_desktop_height,90
ctk_desktop_redraw,90
ctk_desktop_width,90
ctk_dialog_new,91
ctk_dialog_open,91
CTK_HYPERLINK, 85
CTK_ICON,85
CTK_ICON_ADD,86
ctk_icon_add,91
CTK_LABEL, 86
ctk_label_set_height,86
ctk_label_set_text,87
ctk_menu_add,91
ctk_menu_new,92
ctk_menu_remove,92
ctk_menuitem_add,92
ctk_mode_get,93
ctk_mode_set,93
CTK_SEPARATOR,87
ctk_signal_hyperlink_activate,95
ctk_signal_keypress,95
ctk_signal_menu_activate,95
ctk_signal_pointer_button,95
ctk_signal_pointer_move,96
ctk_signal_widget_activate,96
ctk_signal_widget_select,96
ctk_signal_window_close,96
CTK_TEXTENTRY,87
CTK_TEXTENTRY_CLEAR,88
CTK_WIDGET_ADD,88
ctk_widget_add,93
CTK_WIDGET_FOCUS,88

CTK_WIDGET_REDRAW,88
ctk_widget_redraw,93
CTK_WIDGET_SET_WIDTH,89
CTK_WIDGET_SET_XPOS,89
CTK_WIDGET_SET_YPOS,89
CTK_WIDGET_TYPE,89
CTK_WIDGET_XPOS,89
CTK_WIDGET_YPOS,90
ctk_window_clear,94
ctk_window_close,94
ctk_window_new,94
ctk_window_open,94
ctk_window_redraw,95

ctkdraw
ctk_arch_key_t,106
ctk_draw_clear,106
ctk_draw_clear_window,106
ctk_draw_dialog,106
ctk_draw_init,107
ctk_draw_widget,107
ctk_draw_window,107

ctkevents
ctk_signal_hyperlink_activate,101
ctk_signal_keypress,102
ctk_signal_menu_activate,102
ctk_signal_pointer_button,102
ctk_signal_pointer_move,102
ctk_signal_widget_activate,102
ctk_signal_widget_select,102
ctk_signal_window_close,103

Cyclic Redundancy Check 16 (CRC16) calculca-
tion, 166

Device driver APIs,11
DSC

loader,54
dsc,193

loadaddr,194

eeprom
eeprom_init,67
eeprom_read,67
eeprom_write,68

EEPROM API,67
eeprom_init

eeprom,67
eeprom_read

eeprom,67
eeprom_write

eeprom,68
ELF object code loader,69
elf32_rela,194
elfloader

elfloader_init,71

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 303

elfloader_load,71
ELFLOADER_SYMBOL_NOT_FOUND,

70
elfloader_arch_allocate_ram

elfloaderarch,72
elfloader_arch_allocate_rom

elfloaderarch,72
elfloader_arch_relocate

elfloaderarch,72
elfloader_arch_write_text

elfloaderarch,72
elfloader_init

elfloader,71
elfloader_load

elfloader,71
ELFLOADER_SYMBOL_NOT_FOUND

elfloader,70
elfloaderarch

elfloader_arch_allocate_ram,72
elfloader_arch_allocate_rom,72
elfloader_arch_relocate,72
elfloader_arch_write_text,72

ESB RS232,174
esbrs232

rs232_init,174
rs232_print,175
rs232_send,175
rs232_set_input,175
rs232_set_speed,175

etimer,194
etimer_adjust,47
etimer_expiration_time,47
etimer_expired,47
etimer_next_expiration_time,48
etimer_pending,48
etimer_request_poll,48
etimer_reset,49
etimer_restart,49
etimer_set,49
etimer_start_time,50
etimer_stop,50

etimer_adjust
etimer,47
sys,15

etimer_expiration_time
etimer,47
sys,15

etimer_expired
etimer,47
sys,15

etimer_next_expiration_time
etimer,48

etimer_pending
etimer,48

etimer_request_poll
etimer,48

etimer_reset
etimer,49
sys,15

etimer_restart
etimer,49
sys,16

etimer_set
etimer,49
sys,16

etimer_start_time
etimer,50
sys,16

etimer_stop
etimer,50
sys,17

Event timers,45

General configuration options,136

HTONS
uipconvfunc,126

htons
uip, 37
uipconvfunc,129

inactive
ctk_window,193

Introduction to Contiki development under Mi-
crosoft Windows,169

Introduction to Over The Air Reprogramming
under Windows,167

IP configuration options,132

lc
LC_END,56
LC_INIT, 56
LC_RESUME,56
LC_SET,56

LC_END
lc, 56

LC_INIT
lc, 56

LC_RESUME
lc, 56

LC_SET
lc, 56

Libraries,17
Linked list library,159
LIST

list, 160
list

LIST, 160

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 304

list_add,161
list_chop,161
list_copy,161
list_head,162
list_init, 162
list_insert,162
list_length,163
list_pop,163
list_remove,163
list_tail, 164

list_add
list, 161

list_chop
list, 161

list_copy
list, 161

list_head
list, 162

list_init
list, 162

list_insert
list, 162

list_length
list, 163

list_pop
list, 163

list_remove
list, 163

list_tail
list, 164

loadaddr
dsc,194

loader
DSC,54
LOADER_LOAD, 54
LOADER_LOAD_DSC,54
LOADER_UNLOAD, 55
LOADER_UNLOAD_DSC,55

LOADER_LOAD
loader,54

LOADER_LOAD_DSC
loader,54

LOADER_UNLOAD
loader,55

LOADER_UNLOAD_DSC
loader,55

Local continuations,55

Managed memory allocator,157
me

me_decode16,165
me_decode8,165
me_encode,165

me_decode16

me,165
me_decode8

me,165
me_encode

me,165
MEMB

memb,155
memb

MEMB, 155
memb_alloc,156
memb_free,156
memb_init,156

memb_alloc
memb,156

memb_blocks,195
memb_free

memb,156
memb_init

memb,156
Memory block management functions,154
Memory functions,11
mmem,195

mmem_alloc,158
mmem_free,158
mmem_init,159
MMEM_PTR,158

mmem_alloc
mmem,158

mmem_free
mmem,158

mmem_init
mmem,159

MMEM_PTR
mmem,158

mt
mt_exec,62
mt_exec_event,62
mt_exit,62
mt_post,62
mt_start,63
mt_wait,63
mt_yield,63

mt_exec
mt, 62

mt_exec_event
mt, 62

mt_exit
mt, 62

mt_post
mt, 62

MT_PROCESS
mtp,66

mt_process,195
mt_start

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 305

mt, 63
mt_thread,195
mt_wait

mt, 63
mt_yield

mt, 63
mtarch

mtarch_exec,64
mtarch_init,64
mtarch_start,65
mtarch_yield,65

mtarch_exec
mtarch,64

mtarch_init
mtarch,64

mtarch_start
mtarch,65

mtarch_yield
mtarch,65

mtp
MT_PROCESS,66
mtp_start,66

mtp_start
mtp,66

Multi-threading library,60
Multi-threading library convenience functions,

65

net
tcp_attach,9
tcp_connect,10
tcp_listen,10
tcp_unlisten,10
tcpip_poll_tcp,11

Network functions,9
NUM_PNARGS

program-handler.c,205

open
ctk_menus,187

owner
ctk_window,193

platform/ Directory Reference,181
platform/esb/ Directory Reference,179
platform/esb/dev/ Directory Reference,178
platform/esb/dev/beep.h,280
platform/esb/dev/eeprom.c,281
platform/esb/dev/rs232.c,282
platform/esb/dev/rs232.h,282
platform/esb/dev/tr1001.c,283
PROCESS

process.h,267
process,196

process_alloc_event,43
process_exit,43
process_init,44
process_poll,44
process_post,44
process_post_synch,45
process_run,45
process_start,45

process.h
PROCESS,267
PROCESS_BEGIN,267
PROCESS_CONTEXT_BEGIN,267
PROCESS_CONTEXT_END,268
PROCESS_CURRENT,268
PROCESS_END,268
PROCESS_EXITHANDLER,269
PROCESS_NAME,269
PROCESS_NOLOAD,269
PROCESS_PAUSE,269
PROCESS_POLLHANDLER,269
PROCESS_SPAWN,270
PROCESS_THREAD,270
PROCESS_WAIT_EVENT,270
PROCESS_WAIT_EVENT_UNTIL,270
PROCESS_WAIT_UNTIL,271
PROCESS_YIELD_UNTIL,271

process_alloc_event
process,43

PROCESS_BEGIN
process.h,267

PROCESS_CONTEXT_BEGIN
process.h,267

PROCESS_CONTEXT_END
process.h,268

PROCESS_CURRENT
process.h,268

PROCESS_END
process.h,268

PROCESS_ERR_FULL
sys,14

PROCESS_ERR_OK
sys,14

process_exit
process,43

PROCESS_EXITHANDLER
process.h,269

process_init
process,44

PROCESS_NAME
process.h,269

PROCESS_NOLOAD
process.h,269

PROCESS_PAUSE
process.h,269

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 306

process_poll
process,44

PROCESS_POLLHANDLER
process.h,269

process_post
process,44

process_post_synch
process,45

process_run
process,45

PROCESS_SPAWN
process.h,270

process_start
process,45

PROCESS_THREAD
process.h,270

PROCESS_WAIT_EVENT
process.h,270

PROCESS_WAIT_EVENT_UNTIL
process.h,270

PROCESS_WAIT_UNTIL
process.h,271

PROCESS_YIELD_UNTIL
process.h,271

program-handler.c
NUM_PNARGS,205
program_handler_add,205
program_handler_load,206

program_handler_add
program-handler.c,205

program_handler_load
program-handler.c,206

Protosockets library,148
Protothread semaphores,57
Protothreads,73
psock,196

PSOCK_BEGIN,149
PSOCK_CLOSE,150
PSOCK_CLOSE_EXIT,150
PSOCK_DATALEN,150
PSOCK_END,150
PSOCK_EXIT,151
PSOCK_GENERATOR_SEND,151
PSOCK_INIT,151
PSOCK_NEWDATA,152
PSOCK_READBUF,152
PSOCK_READTO,152
PSOCK_SEND,152
PSOCK_SEND_STR,153
PSOCK_WAIT_UNTIL,153

PSOCK_BEGIN
psock,149

psock_buf,197
PSOCK_CLOSE

psock,150
PSOCK_CLOSE_EXIT

psock,150
PSOCK_DATALEN

psock,150
PSOCK_END

psock,150
PSOCK_EXIT

psock,151
PSOCK_GENERATOR_SEND

psock,151
PSOCK_INIT

psock,151
PSOCK_NEWDATA

psock,152
PSOCK_READBUF

psock,152
PSOCK_READTO

psock,152
PSOCK_SEND

psock,152
PSOCK_SEND_STR

psock,153
PSOCK_WAIT_UNTIL

psock,153
pt, 197
pt.h

PT_BEGIN,274
PT_END,274
PT_EXIT,274
PT_INIT, 274
PT_RESTART,274
PT_SCHEDULE,275
PT_SPAWN,275
PT_THREAD,275
PT_WAIT_THREAD,275
PT_WAIT_UNTIL, 276
PT_WAIT_WHILE, 276
PT_YIELD, 276
PT_YIELD_UNTIL, 277

PT_BEGIN
pt.h,274

PT_END
pt.h,274

PT_EXIT
pt.h,274

PT_INIT
pt.h,274

PT_RESTART
pt.h,274

PT_SCHEDULE
pt.h,275

pt_sem,197
PT_SEM_INIT

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 307

ptsem,59
PT_SEM_SIGNAL

ptsem,59
PT_SEM_WAIT

ptsem,59
PT_SPAWN

pt.h,275
PT_THREAD

pt.h,275
PT_WAIT_THREAD

pt.h,275
PT_WAIT_UNTIL

pt.h,276
PT_WAIT_WHILE

pt.h,276
PT_YIELD

pt.h,276
PT_YIELD_UNTIL

pt.h,277
ptsem

PT_SEM_INIT,59
PT_SEM_SIGNAL,59
PT_SEM_WAIT,59

radio
radio_off,68
radio_on,68

Radio API,68
radio_off

radio,68
tr1001,177

radio_on
radio,68
tr1001,177

resolv_conf
uipdns,147

resolv_getserver
uipdns,147

resolv_lookup
uipdns,147

resolv_query
uipdns,147

rs232_init
esbrs232,174

rs232_print
esbrs232,175

rs232_send
esbrs232,175

rs232_set_input
esbrs232,175

rs232_set_speed
esbrs232,175

SERVICE

sys,14
service,197
service.h

SERVICE_CALL,278
SERVICE_CALL

service.h,278
SERVICE_INTERFACE

sys,14
Static configuration options,131
sys

etimer_adjust,15
etimer_expiration_time,15
etimer_expired,15
etimer_reset,15
etimer_restart,16
etimer_set,16
etimer_start_time,16
etimer_stop,17
PROCESS_ERR_FULL,14
PROCESS_ERR_OK,14
SERVICE,14
SERVICE_INTERFACE,14

Table-driven Manchester encoding and decod-
ing, 164

TCP configuration options,133
tcp_attach

net,9
tcp_connect

net,10
tcp_listen

net,10
tcp_unlisten

net,10
tcpip.h

tcpip_event,237
tcpip_input,235
tcpip_poll_udp,236
udp_attach,236
udp_bind,235
udp_broadcast_new,236
udp_new,237

tcpip_event
tcpip.h,237

tcpip_input
tcpip.h,235

tcpip_poll_tcp
net,11

tcpip_poll_udp
tcpip.h,236

tcpip_uipstate,198
The Contiki file system interface,76
The Contiki program loader,52
The Contiki service mechanism,50

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 308

The Contiki/uIP interface,154
The ESB Embedded Sensor Board,167
The uIP TCP/IP stack,18
timer,198

timer_expired,109
timer_reset,109
timer_restart,110
timer_set,110

Timer library,108
timer_expired

timer,109
timer_reset

timer,109
timer_restart

timer,110
timer_set

timer,110
title

ctk_window,193
titlelen

ctk_menu,186
tr1001

radio_off,177
radio_on,177

TR1001 radio tranciever device driver,176

UDP configuration options,133
udp_attach

tcpip.h,236
udp_bind

tcpip.h,235
udp_broadcast_new

tcpip.h,236
udp_new

tcpip.h,237
uip

htons,37
uip_appdata,41
UIP_APPDATA_SIZE,37
uip_buf,41
uip_chksum,37
uip_conn,41
uip_init, 38
uip_ipchksum,38
uip_len,41
uip_listen,38
uip_send,39
uip_setipid,39
uip_stat,42
uip_tcpchksum,39
uip_udp_new,39
uip_udpchksum,40
uip_unlisten,40

uIP Address Resolution Protocol,139

uIP application functions,117
uIP configuration functions,110
uIP conversion functions,124
uIP device driver functions,113
uIP hostname resolver functions,146
uIP initialization functions,113
uIP packet forwarding,142
uIP TCP throughput booster hack,141
uip_abort

uipappfunc,119
uip_aborted

uipappfunc,119
uip_acked

uipappfunc,119
UIP_ACTIVE_OPEN

uipopttcp,134
uip_appdata

uip, 41
UIP_APPDATA_SIZE

uip, 37
uip_arp_arpin

uiparp,140
UIP_ARP_MAXAGE

uipoptarp,136
uip_arp_out

uiparp,141
uip_arp_timer

uiparp,141
UIP_ARPTAB_SIZE

uipoptarp,136
UIP_BROADCAST

uipoptgeneral,137
uip_buf

uip, 41
uipdevfunc,117

UIP_BUFSIZE
uipoptgeneral,137

UIP_BYTE_ORDER
uipoptcpu,138

uip_chksum
uip, 37

uip_close
uipappfunc,119

uip_closed
uipappfunc,120

uip_conn,198
uip, 41

uip_connect
uipappfunc,122

uip_connected
uipappfunc,120

UIP_CONNS
uipopttcp,134

uip_datalen

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 309

uipappfunc,120
uip_eth_addr,199
uip_eth_hdr,200
UIP_FIXEDADDR

uipoptstaticconf,131
UIP_FIXEDETHADDR

uipoptstaticconf,131
uip_fw_default

uipfw, 145
uip_fw_forward

uipfw, 145
UIP_FW_NETIF

uipfw, 144
uip_fw_netif,200
uip_fw_output

uipfw, 145
uip_fw_register

uipfw, 145
uip_fw_setipaddr

uipfw, 144
uip_fw_setnetmask

uipfw, 144
uip_getdraddr

uipconffunc,111
uip_gethostaddr

uipconffunc,111
uip_getnetmask

uipconffunc,111
uip_icmpip_hdr,200
uip_init

uip, 38
uipinit, 113

uip_input
uipdevfunc,114

uip_ip6addr
uipconvfunc,126

uip_ipaddr
uipconvfunc,126

uip_ipaddr1
uipconvfunc,126

uip_ipaddr2
uipconvfunc,127

uip_ipaddr3
uipconvfunc,127

uip_ipaddr4
uipconvfunc,127

uip_ipaddr_cmp
uipconvfunc,127

uip_ipaddr_copy
uipconvfunc,128

uip_ipaddr_mask
uipconvfunc,128

uip_ipaddr_maskcmp
uipconvfunc,129

uip_ipchksum
uip, 38

uip_len
uip, 41
uipdrivervars,130

uip_listen
uip, 38
uipappfunc,123

UIP_LISTENPORTS
uipopttcp,134

UIP_LLH_LEN
uipoptgeneral,137

uip_log
uipoptgeneral,138

UIP_LOGGING
uipoptgeneral,137

UIP_MAXRTX
uipopttcp,134

UIP_MAXSYNRTX
uipopttcp,135

uip_mss
uipappfunc,120

uip_newdata
uipappfunc,120

uip_periodic
uipdevfunc,115

uip_periodic_conn
uipdevfunc,115

UIP_PINGADDRCONF
uipoptstaticconf,132

uip_poll
uipappfunc,120

uip_poll_conn
uipdevfunc,116

UIP_REASSEMBLY
uipoptip,132

UIP_RECEIVE_WINDOW
uipopttcp,135

uip_restart
uipappfunc,121

uip_rexmit
uipappfunc,121

UIP_RTO
uipopttcp,135

uip_send
uip, 39
uipappfunc,123

uip_setdraddr
uipconffunc,112

uip_setethaddr
uipconffunc,112

uip_sethostaddr
uipconffunc,112

uip_setipid

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 310

uip, 39
uipinit, 113

uip_setnetmask
uipconffunc,112

uip_split_output
uipsplit,142

uip_stat
uip, 42

UIP_STATISTICS
uipoptgeneral,137

uip_stats,201
uip_stop

uipappfunc,121
uip_tcp_appstate_t

uipoptapp,139
UIP_TCP_MSS

uipopttcp,135
uip_tcpchksum

uip, 39
uip_tcpip_hdr,203
UIP_TIME_WAIT_TIMEOUT

uipopttcp,135
uip_timedout

uipappfunc,121
UIP_TTL

uipoptip,132
uip_udp_appstate_t

uipoptapp,139
uip_udp_bind

uipappfunc,121
UIP_UDP_CHECKSUMS

uipoptudp,133
uip_udp_conn,203
uip_udp_new

uip, 39
uipappfunc,123

uip_udp_periodic
uipdevfunc,116

uip_udp_periodic_conn
uipdevfunc,116

uip_udp_remove
uipappfunc,121

uip_udp_send
uipappfunc,122

uip_udpchksum
uip, 40

uip_udpconnection
uipappfunc,122

uip_udpip_hdr,204
uip_unlisten

uip, 40
uipappfunc,124

UIP_URGDATA
uipopttcp,135

uip_urgdatalen
uipappfunc,122

uipappfunc
uip_abort,119
uip_aborted,119
uip_acked,119
uip_close,119
uip_closed,120
uip_connect,122
uip_connected,120
uip_datalen,120
uip_listen,123
uip_mss,120
uip_newdata,120
uip_poll,120
uip_restart,121
uip_rexmit,121
uip_send,123
uip_stop,121
uip_timedout,121
uip_udp_bind,121
uip_udp_new,123
uip_udp_remove,121
uip_udp_send,122
uip_udpconnection,122
uip_unlisten,124
uip_urgdatalen,122

Uiparch,177
uiparp

uip_arp_arpin,140
uip_arp_out,141
uip_arp_timer,141

uipconffunc
uip_getdraddr,111
uip_gethostaddr,111
uip_getnetmask,111
uip_setdraddr,112
uip_setethaddr,112
uip_sethostaddr,112
uip_setnetmask,112

uipconvfunc
HTONS,126
htons,129
uip_ip6addr,126
uip_ipaddr,126
uip_ipaddr1,126
uip_ipaddr2,127
uip_ipaddr3,127
uip_ipaddr4,127
uip_ipaddr_cmp,127
uip_ipaddr_copy,128
uip_ipaddr_mask,128
uip_ipaddr_maskcmp,129
uiplib_ipaddrconv,129

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

INDEX 311

uipdevfunc
uip_buf,117
uip_input,114
uip_periodic,115
uip_periodic_conn,115
uip_poll_conn,116
uip_udp_periodic,116
uip_udp_periodic_conn,116

uipdns
resolv_conf,147
resolv_getserver,147
resolv_lookup,147
resolv_query,147

uipdrivervars
uip_len,130

uipfw
uip_fw_default,145
uip_fw_forward,145
UIP_FW_NETIF,144
uip_fw_output,145
uip_fw_register,145
uip_fw_setipaddr,144
uip_fw_setnetmask,144

uipinit
uip_init, 113
uip_setipid,113

uiplib_ipaddrconv
uipconvfunc,129

uipoptapp
uip_tcp_appstate_t,139
uip_udp_appstate_t,139

uipoptarp
UIP_ARP_MAXAGE,136
UIP_ARPTAB_SIZE,136

uipoptcpu
UIP_BYTE_ORDER,138

uipoptgeneral
UIP_BROADCAST,137
UIP_BUFSIZE,137
UIP_LLH_LEN, 137
uip_log,138
UIP_LOGGING,137
UIP_STATISTICS,137

uipoptip
UIP_REASSEMBLY,132
UIP_TTL, 132

uipoptstaticconf
UIP_FIXEDADDR,131
UIP_FIXEDETHADDR,131
UIP_PINGADDRCONF,132

uipopttcp
UIP_ACTIVE_OPEN,134
UIP_CONNS,134
UIP_LISTENPORTS,134

UIP_MAXRTX, 134
UIP_MAXSYNRTX, 135
UIP_RECEIVE_WINDOW,135
UIP_RTO,135
UIP_TCP_MSS,135
UIP_TIME_WAIT_TIMEOUT, 135
UIP_URGDATA,135

uipoptudp
UIP_UDP_CHECKSUMS,133

uipsplit
uip_split_output,142

Variables used in uIP device drivers,130

Generated on Thu Jun 22 17:45:42 2006 for Contiki 2.x by Doxygen

	The Contiki Operating System 2.x
	Contiki 2.x Module Index
	Contiki 2.x Directory Hierarchy
	Contiki 2.x Data Structure Index
	Contiki 2.x File Index
	Contiki 2.x Module Documentation
	Contiki 2.x Directory Documentation
	Contiki 2.x Data Structure Documentation
	Contiki 2.x File Documentation
	Contiki 2.x Example Documentation

