
Contiki 1.2-devel0 Reference Manual

Generated by Doxygen 1.3.6

Tue Sep 14 01:03:39 2004

Contents

1 The Contiki Operating System 1

2 Contiki 1.2-devel0 Module Index 3

2.1 Contiki 1.2-devel0 Modules. 3

3 Contiki 1.2-devel0 Data Structure Index 5

3.1 Contiki 1.2-devel0 Data Structures. 5

4 Contiki 1.2-devel0 File Index 7

4.1 Contiki 1.2-devel0 File List. 7

5 Contiki 1.2-devel0 Module Documentation 9

5.1 System events. 9

5.2 The Contiki event kernel. 11

5.3 The Contiki program loader. 16

5.4 Protothreads. .19

5.5 Local continuations. 24

5.6 Protothread semaphores. 25

5.7 CTK application functions. 28

5.8 The CTK graphical user interface.. 42

5.9 CTK device driver functions. 46

5.10 The uIP TCP/IP stack. 51

5.11 uIP configuration functions. 61

5.12 uIP initialization functions. 63

5.13 uIP device driver functions. 64

5.14 uIP application functions. 68

5.15 uIP conversion functions. 75

5.16 uIP Address Resolution Protocol. 80

5.17 uIP TCP throughput booster hack. 82

5.18 uIP hostname resolver functions. 83

ii CONTENTS

5.19 Socket library. .85

5.20 Memory block management functions. 91

5.21 Peemptive multi-threading. 94

5.22 Architecture support for multi-threading. 98

5.23 Multi-threading library convenience functions. .100

5.24 System signals. .102

5.25 Uiparch .104

6 Contiki 1.2-devel0 Data Structure Documentation 105

6.1 ctk_menu Struct Reference. .105

6.2 ctk_menuitem Struct Reference. .107

6.3 ctk_menus Struct Reference. .108

6.4 ctk_widget Struct Reference. .109

6.5 ctk_window Struct Reference. .111

6.6 dsc Struct Reference. .113

6.7 socket Struct Reference. .114

6.8 uip_conn Struct Reference. .115

6.9 uip_eth_addr Struct Reference. .117

6.10 uip_eth_hdr Struct Reference. .118

6.11 uip_stats Struct Reference. .119

6.12 uip_udp_conn Struct Reference. .122

7 Contiki 1.2-devel0 File Documentation 123

7.1 apps/program-handler.c File Reference. .123

7.2 conf/uip-conf.h.example File Reference. .126

7.3 conf/www-conf.h.example File Reference. .128

7.4 ctk/ctk-draw.h File Reference. .130

7.5 ctk/ctk.c File Reference. .131

7.6 ctk/ctk.h File Reference. .134

7.7 ek/arg.c File Reference. .139

7.8 ek/dsc.h File Reference. .140

7.9 ek/ek.c File Reference. .141

7.10 ek/loader.h File Reference. .143

7.11 ek/mt.c File Reference. .145

7.12 ek/mt.h File Reference. .146

7.13 ek/pt-sem.h File Reference. .148

7.14 ek/pt.h File Reference. .149

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

CONTENTS iii

7.15 lib/cc.h File Reference. .150

7.16 lib/ctk-textedit.c File Reference. .151

7.17 lib/ctk-textedit.h File Reference. .152

7.18 lib/memb.c File Reference. .154

7.19 lib/memb.h File Reference. .155

7.20 lib/petsciiconv.h File Reference. .156

7.21 uip/resolv.c File Reference. .157

7.22 uip/resolv.h File Reference. .158

7.23 uip/socket.h File Reference. .159

7.24 uip/uip-split.h File Reference. .161

7.25 uip/uip.c File Reference. .162

7.26 uip/uip.h File Reference. .163

7.27 uip/uip_arp.c File Reference. .168

7.28 uip/uip_arp.h File Reference. .169

7.29 uip/uiplib.h File Reference. .170

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

Chapter 1

The Contiki Operating System

Author:
Adam Dunkels<adam@dunkels.com >

The Contiki operating system is a highly portable, minimalistic operating system for a variety of con-
strained systems ranging from modern 8-bit microcontrollers for embedded systems to old 8-bit homecom-
puters. Contiki provides a simple event driven kernel with optional preemptive multithreading, interprocess
communication using message passing signals, a dynamic process structure and support for loading and
unloading programs, native TCP/IP support using the uIP TCP/IP stack, and a graphical subsystem with
either direct graphic support for directly connected terminals or networked virtual display with VNC or
Telnet.

Contiki is written in the C programming language and is freely available as open source under
a BSD-style license. More information about Contiki can be found at the Contiki home page:
http://www.sics.se/ ∼adam/contiki/

mailto:adam@dunkels.com
http://www.sics.se/~adam/contiki/

2 The Contiki Operating System

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

Chapter 2

Contiki 1.2-devel0 Module Index

2.1 Contiki 1.2-devel0 Modules

Here is a list of all modules:

System events .9
The Contiki program loader .16
Protothreads .19

Local continuations .24
Protothread semaphores .25

The CTK graphical user interface. .42

CTK application functions .28
CTK device driver functions .46

The uIP TCP/IP stack .51

uIP configuration functions .61
uIP initialization functions .63
uIP device driver functions .64
uIP application functions .68
uIP conversion functions .75
uIP Address Resolution Protocol .80
uIP TCP throughput booster hack .82
uIP hostname resolver functions .83
Uiparch .104

Socket library .85
Memory block management functions .91
Peemptive multi-threading .94

Architecture support for multi-threading .98
Multi-threading library convenience functions .100

System signals .102

4 Contiki 1.2-devel0 Module Index

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

Chapter 3

Contiki 1.2-devel0 Data Structure Index

3.1 Contiki 1.2-devel0 Data Structures

Here are the data structures with brief descriptions:

ctk_menu(Representation of an individual menu) .105
ctk_menuitem(Representation of an individual menu item) .107
ctk_menus(Representation of the menu bar) .108
ctk_widget(The generic CTK widget structure that contains all other widget structures)109
ctk_window(Representation of a CTK window) .111
dsc(The DSC program description structure) .113
socket(The representation of a socket) .114
uip_conn(Representation of a uIP TCP connection) .115
uip_eth_addr(Representation of a 48-bit Ethernet address) .117
uip_eth_hdr(The Ethernet header) .118
uip_stats(The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is

set to 1) .119
uip_udp_conn(Representation of a uIP UDP connection) .122

6 Contiki 1.2-devel0 Data Structure Index

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

Chapter 4

Contiki 1.2-devel0 File Index

4.1 Contiki 1.2-devel0 File List

Here is a list of all documented files with brief descriptions:

apps/program-handler.c(The program handler, used for loading programs and starting the screen-
saver) .123

conf/uip-conf.h.example(UIP configuration file) .126
conf/www-conf.h.example(The Contiki web browser configuration file)128
ctk/ctk-draw.h(CTK screen drawing module interface, ctk-draw)130
ctk/ctk.c(The Contiki Toolkit CTK, the Contiki GUI) .131
ctk/ctk.h(CTK header file) .134
ek/arg.c(Argument buffer for passing arguments when starting processes)139
ek/dsc.h(Declaration of the DSC program description structure)140
ek/ek.c(Event kernel, event dispatcher and handler of uIP events)141
ek/ek.h .??
ek/loader.h(Default definitions and error values for the Contiki program loader)143
ek/mt.c (Implementation of the archtecture agnostic parts of the preemptive multithreading li-

brary for Contiki) .145
ek/mt.h(Header file for the preemptive multitasking library for Contiki)146
ek/pt-sem.h(Couting semaphores implemented on protothreads)148
ek/pt.h(Protothreads implementation) .149
lib/cc.h(Default definitions of C compiler quirk work-arounds)150
lib/ctk-textedit.c(An experimental CTK text edit widget) .151
lib/ctk-textedit.h(Header file for the experimental application level CTK textedit widget)152
lib/memb.c(Memory block allocation routines) .154
lib/memb.h(Memory block allocation routines) .155
lib/petsciiconv.h(PETSCII/ASCII conversion functions) .156
uip/resolv.c(DNS host name to IP address resolver) .157
uip/resolv.h(UIP DNS resolver code header file) .158
uip/socket.h(Socket library header file) .159
uip/uip-split.h(Module for splitting outbound TCP segments in two to avoid the delayed ACK

throughput degradation) .161
uip/uip.c(The uIP TCP/IP stack code) .162
uip/uip.h(Header file for the uIP TCP/IP stack) .163
uip/uip_arp.c(Implementation of the ARP Address Resolution Protocol)168
uip/uip_arp.h(Macros and definitions for the ARP module)169
uip/uiplib.h (Various uIP library functions) .170

8 Contiki 1.2-devel0 File Index

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

Chapter 5

Contiki 1.2-devel0 Module
Documentation

5.1 System events

5.1.1 Detailed Description

The Contiki system defines a number of default events that can be delivered to processes.

Variables

• ek_event_tek_event_quit

The "quit" event.

• ek_event_tek_event_msg

A generic message event.

5.1.2 Variable Documentation

5.1.2.1 ek_event_tek_event_msg

A generic message event.

This event may be used to send messages between processes. The actual interpretation of the message is
up to the applications to decide.

5.1.2.2 ek_event_tek_event_quit

The "quit" event.

This event is posted to a process in order to tell it to remove itself from the system. Since each program
may have allocated system resources that must be released before the process quits, each program must
implement the event handler by itself. A process that receives this event must callLOADER_UNLOAD()
to unload itself after doing all necessary clean ups (such as closing open windows, deallocate allocated
memory, etc.). The following code shows how this can be implemented:

10 Contiki 1.2-devel0 Module Documentation

static struct ctk_window mainwindow;
static EK_EVENTHANDLER(example_eventhandler, s, data);

static
EK_EVENTHANDLER(example_eventhandler, s, data)
{

EK_EVENTHANDLER_ARGS(s, data);

if(s == ek_event_quit) {
ctk_window_close(&mainwindow);
ek_exit(&p);
LOADER_UNLOAD();

}
}

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.2 The Contiki event kernel 11

5.2 The Contiki event kernel

5.2.1 Detailed Description

At the heart of the Contiki desktop environment is the event driven Contiki kernel. Using non-preemptive
multitasking, the Contiki event kernel makes it possible to run several programs in parallel. It also provides
message passing mechanisms to the running programs.

The Contiki kernel is a simple event driven dispatcher which handles processes, events and uIP events. All
code execution is initiated by the dispatcher, and applications are implemented as C functions that must
return within a short time after being called. It therefore is not possible to implement processes with, e.g.,
long-lasting while() loops such as the infamous while(1); loop.

Modules

• groupThe Contiki event kernel

Functions

• ek_event_tek_alloc_event(void)

Allocates a event number.

• ek_id_tek_start(CC_REGISTER_ARG struct ek_proc∗p)

Starts a new process.

• void ek_exit(void)

Exit the currently running process.

• ek_proc∗ ek_process(ek_id_t id)

Finds the process structure for a specific process ID.

• void ek_init (void)

Initializes the dispatcher module.

• void ek_process_event(void)

Process the next event in the event queue and deliver it to listening processes.

• void ek_process_poll(void)

Call each process’ poll handler.

• int ek_run(void)

Run the system once - call poll handlers and process one event.

• ek_err_tek_post(ek_id_t id, ek_event_t s, ek_data_t data)

Post an asynchronous event.

• void ek_post_synch(ek_id_t id, ek_event_t ev, ek_data_t data)

Post a synchronous event.

• char∗ arg_alloc(char size)

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

12 Contiki 1.2-devel0 Module Documentation

Allocates an argument buffer.

• void arg_free(char∗arg)

Deallocates an argument buffer.

5.2.1.1 The dispatcher

The dispatcher is the initiator of all program execution in Contiki. After the system has been initialized by
the boot up code, theek_run()function is called. This function never returns, but will sit in a loop in which
it does two things.

• Pulls the first event of the event queue and dispatches this to all listening processes (ek_process_-
event()).

• Executes the "poll" handlers of all processes that have registered (ek_process_poll()).

Only one event is processes at a time, and the poll handlers of all processes are called between two events
are handled.

A process is defined by an initialization function, a event handler, a uIP event handler, and an poll handler.
The event handler is called when a event has been posted, for which the process is currently listening. The
uIP event handler is called when the uIP TCP/IP stack has an event to deliver to the process. Such events
can be that new data has arrived on a connection, that previously sent data has been acknowledged or that
a connection has been closed. The poll handler is periodically called by the system.

A process is started by calling the ek_start() function. This function must be called by the initialization
function before any other dispatcher function is called. When the function returns, the new process is
running.

The initialization function is declared with the special LOADER_INIT() macro. The initializaition function
takes a single argument; a char∗ pointer.

The functionek_exit()is used to tell the dispatcher that a process has exited. This function must be called
by the process itself, and must be called the process unloads itself.

Note:
It is not possible to callek_exit()on behalf of another process - instead, post the event ek_event_quit
with the process as a receiver. The other process should then listen for this event, and callek_exit()
when the event is received.

The dispatcher can pass events between different processes. Events are simple messages that consist of a
event number and a generic data pointer called the event data. The event data can be used to pass messages
between processes. In order for a event to be delivered to a process, the process must be listening for the
event number.

If a process has registered an poll handler, the dispatcher will call it as often as possible. The poll handler
can be used to implement timer based functionality (by checking the ek_clock() function), or other back-
ground processing. The poll handler must return to the caller within a short time, or otherwise the system
will feel sluggish.

The uIP TCP/IP stack will call the dispatcher when a uIP event has occured. The dispatcher will find the
right process for which the event is intended and call the process’ uIP handler function.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.2 The Contiki event kernel 13

5.2.1.2 Argument buffer

The argument buffer can be used when passing an argument from an exiting process to a process that
has not been created yet. Since the exiting process will have exited when the new process is started, the
argument cannot be passed in any of the processes’ addres spaces. In such situations, the argument buffer
can be used.

The argument buffer is statically allocated in memory and is globally accessible to all processes.

An argument buffer is allocated with thearg_alloc()function and deallocated with thearg_free()function.
Thearg_free()function is designed so that it can take any pointer, not just an argument buffer pointer. If
the pointer toarg_free()is not an argument buffer, the function does nothing.

5.2.2 Function Documentation

5.2.2.1 char∗ arg_alloc (charsize)

Allocates an argument buffer.

Parameters:
size The requested size of the buffer, in bytes.

Returns:
Pointer to allocated buffer, or NULL if no buffer could be allocated.

Note:
It currently is not possible to allocate argument buffers of any other size than 128 bytes.

5.2.2.2 void arg_free (char∗ arg)

Deallocates an argument buffer.

This function deallocates the argument buffer pointed to by the parameter, but only if the buffer actually is
an argument buffer and is allocated. It is perfectly safe to call this function with any pointer.

Parameters:
arg A pointer.

5.2.2.3 ek_event_t ek_alloc_event (void)

Allocates a event number.

Returns:
The allocated event number or EK_EVENT_NONE if no event number could be allocated.

5.2.2.4 void ek_exit (void)

Exit the currently running process.

This function causes the currently running process to exit. The function must be called by the process
before it unloads itself, or the system will crash.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

14 Contiki 1.2-devel0 Module Documentation

5.2.2.5 void ek_init (void)

Initializes the dispatcher module.

Must be called during the initialization of Contiki.

5.2.2.6 ek_err_t ek_post (ek_id_tid, ek_event_ts, ek_data_tdata)

Post an asynchronous event.

This function posts an asynchronous event to one or more processes. The handing of the event is deferred
until the target process is scheduled by the kernel. An event can be broadcast to all processes, in which
case all processes in the system will be scheduled to handle the event.

Parameters:
s The event to be posted.

data The auxillary data to be sent with the event

id The process ID to which the event should be posted, or EK_BROADCAST if the event should be
posted to all processes.

Return values:
EK_ERR_OK The event could be posted.

EK_ERR_FULL The event queue was full and the event could not be posted.

5.2.2.7 void ek_post_synch (ek_id_tid, ek_event_tev, ek_data_tdata)

Post a synchronous event.

This function emits a event and calls the listening processes’ event handlers immediately, before returning
to the caller. This function requires more call stack space than the ek_emit() function and should be used
with care, and only in situtations where the exact implications are known.

In most situations, the ek_emit() function should be used instead.

Parameters:
s The event to be emitted.

data The auxillary data to be sent with the event

id The process ID to which the event should be emitted, or EK_BROADCAST if the event should be
emitted to all processes listening for the event.

5.2.2.8 struct ek_proc∗ ek_process (ek_id_tid)

Finds the process structure for a specific process ID.

Parameters:
id The process ID for the process.

Returns:
The process structure for the process, or NULL if there process ID was not found.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.2 The Contiki event kernel 15

5.2.2.9 int ek_run (void)

Run the system once - call poll handlers and process one event.

This function should be called repeatedly from the main() program to actuall run the Contiki system. It
calls the necessary poll handlers, and processes one event. The function returns the number of events that
are waiting in the event queue so that the caller may choose to put the CPU to sleep when there are no
pending events.

Returns:
The number of events that are currently waiting in the event queue.

Here is the call graph for this function:

ek_run

ek_process_event

ek_process_poll

5.2.2.10 ek_id_t ek_start (CC_REGISTER_ARG struct ek_proc∗ p)

Starts a new process.

Is called by a program in order to start a new process for the program. This function should be called
quite early in the initialization procedure of a new process. In partcular, it must be called before any other
dispatcher functions, or functions of other modules that make use of dispatcher functions. Most CTK
functions call dispatcher functions, and should therefore not be called before ek_start() is called.

Example:

static void app_poll(void);
static EK_EVENTHANDLER(app_eventhandler, s, data);
static struct ek_proc p =

{EK_PROC("Generic applications", app_poll, app_eventhandler, NULL)};
static ek_id_t id = EK_ID_NONE;

LOADER_INIT_FUNC(app_init, arg)
{

arg_free(arg);

if(id == EK_ID_NONE) {
id = ek_start(&p);

rest_of_initialization();
}

}

Parameters:
p A pointer to a ek_proc struct that must be found in the process own memory space.

Returns:
The process identifier for the new process or EK_ID_NONE if the process could not be started.

Here is the call graph for this function:

ek_start ek_post

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

16 Contiki 1.2-devel0 Module Documentation

5.3 The Contiki program loader

5.3.1 Detailed Description

The Contiki program loader is an abstract interface for loading and starting programs.

Data Structures

• structdsc

The DSC program description structure.

Defines

• #defineDSC(dscname, description, prgname, initfunc, icon) const structdscdscname = {description,
prgname, icon}

Intantiating macro for the DSC structure.

• #defineLOADER_OK0 /∗∗< No error.∗/
No error.

• #defineLOADER_ERR_READ1 /∗∗< Read error.∗/
Read error.

• #defineLOADER_ERR_HDR2 /∗∗< Header error.∗/
Header error.

• #defineLOADER_ERR_OS3 /∗∗< Wrong OS.∗/
Wrong OS.

• #defineLOADER_ERR_FMT4 /∗∗< Data format error.∗/
Data format error.

• #defineLOADER_ERR_MEM5 /∗∗< Not enough memory.∗/
Not enough memory.

• #defineLOADER_ERR_OPEN6 /∗∗< Could not open file.∗/
Could not open file.

• #defineLOADER_ERR_ARCH7 /∗∗< Wrong architecture.∗/
Wrong architecture.

• #defineLOADER_ERR_VERSION8 /∗∗< Wrong OS version.∗/
Wrong OS version.

• #defineLOADER_ERR_NOLOADER9 /∗∗< Program loading not supported.∗/
Program loading not supported.

• #defineLOADER_LOAD(name, arg) LOADER_ERR_NOLOADER

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.3 The Contiki program loader 17

Load and execute a program.

• #defineLOADER_UNLOAD()

Unload a program from memory.

• #defineLOADER_LOAD_DSC(name) NULL

Load a DSC (program description).

• #defineLOADER_UNLOAD_DSC(dsc)

Unload a DSC (program description).

5.3.1.1 The program description structure

The Contiki DSC structure is used for describing programs. It includes a string describing the program, the
name of the program file on disk (or a pointer to the programs initialization function for systems without
disk support), a bitmap icon and a text version of the same icon.

The DSC is saved into a file which can be loaded by programs such as the "Directory" application which
reads all DSC files on disk and presents the icons and descriptions in a window.

5.3.2 Define Documentation

5.3.2.1 #define DSC(dscname, description, prgname, initfunc, icon) const structdscdscname =
{description, prgname, icon}

Intantiating macro for the DSC structure.

Parameters:
dscnameThe name of the C variable which is to contain the DSC.

description A one-line text describing the program.

prgname The name of the program on disk.

initfunc A pointer to the initialization function of the program.

icon A pointer to the CTK icon.

5.3.2.2 #define LOADER_LOAD(name, arg) LOADER_ERR_NOLOADER

Load and execute a program.

This macro is used for loading and executing a program, and requires support from the architecture depen-
dant code. The actual program loading is made by architecture specific functions.

Note:
A program loaded withLOADER_LOAD() must call theLOADER_UNLOAD() function to unload
itself.

Parameters:
name The name of the program to be loaded.

arg A pointer argument that is passed to the program.

Returns:
A loader error, or LOADER_OK if loading was successful.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

18 Contiki 1.2-devel0 Module Documentation

5.3.2.3 #define LOADER_LOAD_DSC(name) NULL

Load a DSC (program description).

Loads a DSC (program description) into memory and returns a pointer to the dsc.

Returns:
A pointer to the DSC or NULL if it could not be loaded.

5.3.2.4 #define LOADER_UNLOAD()

Unload a program from memory.

This macro is used for unloading a program and deallocating any memory that was allocated during the
loading of the program. This function must be called by the program itself.

5.3.2.5 #define LOADER_UNLOAD_DSC(dsc)

Unload a DSC (program description).

Unload a DSC from memory and deallocate any memory that was allocated when it was loaded.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.4 Protothreads 19

5.4 Protothreads

5.4.1 Detailed Description

Protothreads are lightweight stackless threads that is used to provide blocking contexts in event-driven
systems. This is useful for implementing sequential control flow, without requiring ordinary threads and
multiple stacks. Protothreads provides conditional blocking inside a C function.

The advantage of protothreads over ordinary threads is that a protothread do not require a separate stack.
In memory constrained systems, the overhead of allocating multiple stacks can consume large amounts of
the available memory. In contrast, each protothread only requires between two and twelve bytes of state,
depending on the architecture.

Because protothreads are stackless, a protothread can only run within a single C function. A protothread
may call normal C functions, but cannot block inside a called function. Blocking inside nested function
calls are made by spawning a separate protothread for each potentially blocking function.

A protothread is driven by repeated calls to the function in which the protothread is running. Each time the
function is called, the protothread will run until it blocks or exits.

Protothreads are implemented usinglocal continuations. A local continuation represents the current state
of execution at a particular place in the program, but does not provide any call history or local variables.

The protothreads API consists of four basic operations: initialization:PT_INIT(), execution:PT_BEGIN(),
conditional blocking:PT_WAIT_UNTIL() and exit:PT_END(). On top of these, two convenience func-
tions are built: reversed condition blocking:PT_WAIT_WHILE() and protothread blocking:PT_WAIT_-
THREAD().

Files

• file pt.h

Protothreads implementation.

Modules

• groupLocal continuations
• groupProtothread semaphores

Defines

• #definePT_THREAD(name_args)

Declaration of a protothread.

• #definePT_INIT(pt)

Initialize a protothread.

• #definePT_BEGIN(pt)

Start a protothread.

• #definePT_WAIT_UNTIL(pt, condition)

Block and wait until condition is true.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

20 Contiki 1.2-devel0 Module Documentation

• #definePT_WAIT_WHILE(pt, cond)

Block and wait while condition is true.

• #definePT_WAIT_THREAD(pt, thread)

Block and wait until a child protothread completes.

• #definePT_SPAWN(pt, thread)

Spawn a child protothread and wait until it exits.

• #definePT_RESTART(pt)

Restart the protothread.

• #definePT_EXIT(pt)

Exit the protothread.

• #definePT_END(pt)

Declare the end of a protothread.

5.4.2 Define Documentation

5.4.2.1 #define PT_BEGIN(pt)

Start a protothread.

This macro is used to set the starting point of a protothread. It should be placed at the start of the function
in which the protothread runs. All C statements above thePT_BEGIN()invokation will be executed each
time the protothread is scheduled.

Parameters:
pt A pointer to the protothread control structure.

Example:

PT_THREAD(producer(struct pt *p, int event)) {
int empty;
empty = (event == CONSUMED || event == DROPPED);

PT_BEGIN(p);

PT_WAIT_UNTIL(empty);
produce();
PT_WAIT_UNTIL(event == PRODUCED);

PT_EXIT(p);
}

5.4.2.2 #define PT_END(pt)

Declare the end of a protothread.

This macro is used for declaring that a protothread ends. It should always be used together with a matching
PT_BEGIN()macro.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.4 Protothreads 21

Parameters:
pt A pointer to the protothread control structure.

5.4.2.3 #define PT_EXIT(pt)

Exit the protothread.

This macro causes the protothread to exit. If the protothread was spawned by another protothread, the
parent protothread will become unblocked and can continue to run.

Parameters:
pt A pointer to the protothread control structure.

5.4.2.4 #define PT_INIT(pt)

Initialize a protothread.

Initializes a protothread. Initialization must be done prior to starting to execute the protothread.

Parameters:
pt A pointer to the protothread control structure.

Example:

int main(void) {
struct pt p;
int event;

PT_INIT(&p);
while(PT_RUNNING(consumer(&p, event))) {

event = get_event();
}

}

5.4.2.5 #define PT_RESTART(pt)

Restart the protothread.

This macro will block and cause the protothread to restart its execution at the place of thePT_BEGIN()
call.

Parameters:
pt A pointer to the protothread control structure.

5.4.2.6 #define PT_SPAWN(pt, thread)

Spawn a child protothread and wait until it exits.

This macro spawns a child protothread and waits until it exits. The macro can only be used within a
protothread.

Parameters:
pt A pointer to the protothread control structure.

thread The child protothread with arguments

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

22 Contiki 1.2-devel0 Module Documentation

5.4.2.7 #define PT_THREAD(name_args)

Declaration of a protothread.

This macro is used to declare a protothread.

Example:

PT_THREAD(consumer(struct pt *p, int event)) {
PT_BEGIN(p);
PT_WAIT_UNTIL(event == AVAILABLE);
consume();
PT_WAIT_UNTIL(event == CONSUMED);
acknowledge_consumed();
PT_END(p);

}

5.4.2.8 #define PT_WAIT_THREAD(pt, thread)

Block and wait until a child protothread completes.

This macro schedules a child protothread. The current protothread will block until the child protothread
completes.

Note:
The child protothread must be manually initialized with thePT_INIT() function before this function is
used.

Parameters:
pt A pointer to the protothread control structure.

thread The child protothread with arguments

Example:

PT_THREAD(child(struct pt *p, int event)) {
PT_BEGIN(p);

PT_WAIT_UNTIL(event == EVENT1);

PT_END(p);
}

PT_THREAD(parent(struct pt *p, struct pt *child_pt, int event)) {
PT_BEGIN(p);

PT_INIT(child_pt);

PT_WAIT_THREAD(p, child(child_pt, event));

PT_END(p);
}

5.4.2.9 #define PT_WAIT_UNTIL(pt, condition)

Block and wait until condition is true.

This macro blocks the protothread until the specified condition is true.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.4 Protothreads 23

Parameters:
pt A pointer to the protothread control structure.

condition The condition.

Example:

PT_THREAD(seconds(struct pt *p)) {
PT_BEGIN(p);

PT_WAIT_UNTIL(p, time >= 2 * SECOND);
printf("Two seconds have passed\n");

PT_EXIT(p);
}

5.4.2.10 #define PT_WAIT_WHILE(pt, cond)

Block and wait while condition is true.

This function blocks and waits while condition is true. SeePT_WAIT_UNTIL().

Parameters:
pt A pointer to the protothread control structure.

cond The condition.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

24 Contiki 1.2-devel0 Module Documentation

5.5 Local continuations

Local continuations form the basis for implementing protothreads. A local continuation can beset in a
specific function to capture the state of the function. After a local continuation has been set can beresumed
in order to restore the state of the function at the point where the local continuation was set.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.6 Protothread semaphores 25

5.6 Protothread semaphores

5.6.1 Detailed Description

This module implements counting semaphores on top of protothreads. Semaphores are a synchronization
primitive that provide two operations: "wait" and "signal". The "wait" operation checks the semaphore
counter and blocks the thread if the counter is zero. The "signal" operation increases the semaphore counter
but does not block. If another thread has blocked waiting for the semaphore that is signalled, the blocked
thread will become runnable again.

Semaphores can be used to implement other, more structured, synchronization primitives such as monitors
and message queues/bounded buffers (see below).

The following example shows how the producer-consumer problem, also known as the bounded buffer
problem, can be solved using protothreads and semaphores. Notes on the program follow after the example.

#include "pt-sem.h"

#define NUM_ITEMS 32
#define BUFSIZE 8

static struct pt_sem mutex, full, empty;

PT_THREAD(producer(struct pt *pt))
{

static int produced;

PT_BEGIN(pt);

for(produced = 0; produced < NUM_ITEMS; ++produced) {

PT_SEM_WAIT(pt, &full);

PT_SEM_WAIT(pt, &mutex);
add_to_buffer(produce_item());
PT_SEM_SIGNAL(pt, &mutex);

PT_SEM_SIGNAL(pt, &empty);
}

PT_END(pt);
}

PT_THREAD(consumer(struct pt *pt))
{

static int consumed;

PT_BEGIN(pt);

for(consumed = 0; consumed < NUM_ITEMS; ++consumed) {

PT_SEM_WAIT(pt, &empty);

PT_SEM_WAIT(pt, &mutex);
consume_item(get_from_buffer());
PT_SEM_SIGNAL(pt, &mutex);

PT_SEM_SIGNAL(pt, &full);
}

PT_END(pt);
}

PT_THREAD(driver_thread(struct pt *pt))

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

26 Contiki 1.2-devel0 Module Documentation

{
static struct pt pt_producer, pt_consumer;

PT_BEGIN(pt);

PT_SEM_INIT(&empty, 0);
PT_SEM_INIT(&full, BUFSIZE);
PT_SEM_INIT(&mutex, 1);

PT_INIT(&pt_producer);
PT_INIT(&pt_consumer);

PT_WAIT_THREAD(pt, producer(&pt_producer) &
consumer(&pt_consumer));

PT_END(pt);
}

The program uses three protothreads: one protothread that implements the consumer, one thread that im-
plements the producer, and one protothread that drives the two other protothreads. The program uses three
semaphores: "full", "empty" and "mutex". The "mutex" semaphore is used to provide mutual exclusion
for the buffer, the "empty" semaphore is used to block the consumer is the buffer is empty, and the "full"
semaphore is used to block the producer is the buffer is full.

The "driver_thread" holds two protothread state variables, "pt_producer" and "pt_consumer". It is impor-
tant to note that both these variables are declared asstatic. If the static keyword is not used, both variables
are stored on the stack. Since protothreads do not store the stack, these variables may be overwritten dur-
ing a protothread wait operation. Similarly, both the "consumer" and "producer" protothreads declare their
local variables as static, to avoid them being stored on the stack.

Files

• file pt-sem.h

Couting semaphores implemented on protothreads.

Defines

• #definePT_SEM_INIT(s, c)

Initialize a semaphore.

• #definePT_SEM_WAIT(pt, s)

Wait for a semaphore.

• #definePT_SEM_SIGNAL(pt, s)

Signal a semaphore.

5.6.2 Define Documentation

5.6.2.1 #define PT_SEM_INIT(s, c)

Initialize a semaphore.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.6 Protothread semaphores 27

This macro initializes a semaphore with a value for the counter. Internally, the semaphores use an "unsigned
int" to represent the counter, and therefore the "count" argument should be within range of an unsigned int.

Parameters:
s (struct pt_sem∗) A pointer to the pt_sem struct representing the semaphore

c (unsigned int) The initial count of the semaphore.

5.6.2.2 #define PT_SEM_SIGNAL(pt, s)

Signal a semaphore.

This macro carries out the "signal" operation on the semaphore. The signal operation increments the
counter inside the semaphore, which eventually will cause waiting protothreads to continue executing.

Parameters:
pt (struct pt∗) A pointer to the protothread (struct pt) in which the operation is executed.

s (struct pt_sem∗) A pointer to the pt_sem struct representing the semaphore

5.6.2.3 #define PT_SEM_WAIT(pt, s)

Wait for a semaphore.

This macro carries out the "wait" operation on the semaphore. The wait operation causes the protothread
to block while the counter is zero. When the counter reaches a value larger than zero, the protothread will
continue.

Parameters:
pt (struct pt∗) A pointer to the protothread (struct pt) in which the operation is executed.

s (struct pt_sem∗) A pointer to the pt_sem struct representing the semaphore

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

28 Contiki 1.2-devel0 Module Documentation

5.7 CTK application functions

5.7.1 Detailed Description

The CTK functions used by an application program.

Defines

• #defineCTK_SEPARATOR(x, y, w) NULL, NULL, x, y, CTK_WIDGET_SEPARATOR, w, 1,
CTK_WIDGET_FLAG_INITIALIZER(0)

Instantiating macro for the ctk_separator widget.

• #defineCTK_BUTTON(x, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1, CTK_-
WIDGET_FLAG_INITIALIZER(0) text

Instantiating macro for the ctk_button widget.

• #defineCTK_LABEL(x, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h, CTK_-
WIDGET_FLAG_INITIALIZER(0) text,

Instantiating macro for the ctk_label widget.

• #defineCTK_HYPERLINK(x, y, w, text, url) NULL, NULL, x, y, CTK_WIDGET_HYPERLINK,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, url

Instantiating macro for the ctk_hyperlink widget.

• #defineCTK_TEXTENTRY_CLEAR(e) do {memset((e)→ text, 0, (e)→ len); (e)→ xpos = 0;}
while(0);

Clears a text entry widget and sets the cursor to the start of the text line.

• #defineCTK_TEXTENTRY(x, y, w, h, text, len)

Instantiating macro for the ctk_textentry widget.

• #defineCTK_ICON(title, bitmap, textmap)

Instantiating macro for the ctk_icon widget.

• #defineCTK_ICON_ADD(icon, id) ctk_icon_add((structctk_widget∗)icon, id)

Add an icon to the desktop.

• #defineCTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (structctk_widget∗)widg)

Add a widget to a window.

• #defineCTK_WIDGET_FOCUS(win, widg) (win)→ focused = (structctk_widget∗)(widg)

Set focus to a widget.

• #defineCTK_WIDGET_REDRAW(widg) ctk_widget_redraw((structctk_widget∗)widg)

Add a widget to the redraw queue.

• #defineCTK_WIDGET_TYPE(w) ((w)→ type)

Obtain the type of a widget.

• #defineCTK_WIDGET_SET_WIDTH(widget, width)

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.7 CTK application functions 29

Sets the width of a widget.

• #defineCTK_WIDGET_XPOS(w) (((structctk_widget∗)(w))→ x)

Retrieves the x position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_SET_XPOS(w, xpos) ((structctk_widget∗)(w))→ x = (xpos)

Sets the x position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_YPOS(w) (((structctk_widget∗)(w))→ y)

Retrieves the y position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_SET_YPOS(w, ypos) ((structctk_widget∗)(w))→ y = (ypos)

Sets the y position of a widget, relative to the window in which the widget is contained.

• #definectk_label_set_height(w, height) (w)→ widget.label.h = (height)

Set the height of a label.

• #definectk_label_set_text(l, t) (l) → text = (t)

Set the text of a label.

• #definectk_button_set_text(b, t) (b)→ text = (t)

Set the text of a button.

Functions

• void ctk_widget_redraw(structctk_widget∗w)

Redraws a widget.

• void ctk_desktop_redraw(struct ctk_desktop∗d)

Redraw the entire desktop.

• unsigned charctk_desktop_width(struct ctk_desktop∗d)

Gets the width of the desktop.

• unsigned charctk_desktop_height(struct ctk_desktop∗d)

Gets the height of the desktop.

• void ctk_mode_set(unsigned char m)

Sets the current CTK mode.

• unsigned charctk_mode_get(void)

Retrieves the current CTK mode.

• void ctk_icon_add(CC_REGISTER_ARG structctk_widget∗icon, ek_id_t id)

Add an icon to the desktop.

• void ctk_dialog_open(structctk_window∗d)

Open a dialog box.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

30 Contiki 1.2-devel0 Module Documentation

• void ctk_dialog_close(void)

Close the dialog box, if one is open.

• void ctk_window_open(CC_REGISTER_ARG structctk_window∗w)

Open a window, or bring window to front if already open.

• void ctk_window_close(structctk_window∗w)

Close a window if it is open.

• void ctk_window_clear(structctk_window∗w)

Remove all widgets from a window.

• void ctk_menu_add(structctk_menu∗menu)

Add a menu to the menu bar.

• void ctk_menu_remove(structctk_menu∗menu)

Remove a menu from the menu bar.

• void ctk_window_redraw(structctk_window∗w)

Redraw a window.

• void ctk_window_new(structctk_window∗window, unsigned char w, unsigned char h, char∗title)

Create a new window.

• void ctk_dialog_new(CC_REGISTER_ARG structctk_window∗dialog, unsigned char w, unsigned
char h)

Creates a new dialog.

• void ctk_menu_new(CC_REGISTER_ARG structctk_menu∗menu, char∗title)

Creates a new menu.

• unsigned charctk_menuitem_add(CC_REGISTER_ARG structctk_menu∗menu, char∗name)

Adds a menu item to a menu.

• void CC_FASTCALLctk_widget_add(CC_REGISTER_ARG structctk_window∗window, CC_-
REGISTER_ARG structctk_widget∗widget)

Adds a widget to a window.

Variables

• ek_event_tctk_signal_keypress

Emitted for every key being pressed.

• ek_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

• ek_event_tctk_signal_widget_select

Emitted when a widget is selected.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.7 CTK application functions 31

• ek_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

• ek_event_tctk_signal_window_close

Emitted when a window is closed.

• ek_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

• ek_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

• ek_event_tctk_signal_button_activate

Same as ctk_signal_widget_activate.

• ek_event_tctk_signal_button_hover

Same as ctk_signal_widget_select.

• ek_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

• ek_event_tctk_signal_hyperlink_hover

Same as ctk_signal_widget_select.

5.7.2 Define Documentation

5.7.2.1 #define CTK_BUTTON(x, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1,
CTK_WIDGET_FLAG_INITIALIZER(0) text

Instantiating macro for the ctk_button widget.

This macro is used when instantiating a ctk_button widget and is intended to be used together with a struct
assignment like this:

struct ctk_button but =
{CTK_BUTTON(0, 0, 2, "Ok")};

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

text The button text.

5.7.2.2 #define ctk_button_set_text(b, t) (b)→ text = (t)

Set the text of a button.

Parameters:
b The CTK button widget.

t The new text of the button.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

32 Contiki 1.2-devel0 Module Documentation

5.7.2.3 #define CTK_HYPERLINK(x, y, w, text, url) NULL, NULL, x, y,
CTK_WIDGET_HYPERLINK, w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, url

Instantiating macro for the ctk_hyperlink widget.

This macro is used when instantiating a ctk_hyperlink widget and is intended to be used together with a
struct assignment like this:

struct ctk_hyperlink hlink =
{CTK_HYPERLINK(0, 0, 7, "Contiki", "http://dunkels.com/adam/contiki/")};

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

text The hyperlink text.

url The hyperlink URL.

5.7.2.4 #define CTK_ICON(title, bitmap, textmap)

Value:

NULL, NULL, 0, 0, CTK_WIDGET_ICON, 2, 4, CTK_WIDGET_FLAG_INITIALIZER(0) \
title, EK_ID_NONE, \
CTK_ICON_BITMAP(bitmap), CTK_ICON_TEXTMAP(textmap)

Instantiating macro for the ctk_icon widget.

This macro is used when instantiating a ctk_icon widget and is intended to be used together with a struct
assignment like this:

struct ctk_icon icon =
{CTK_ICON("An icon", bitmapptr, textmapptr)};

Parameters:
title The icon’s text.

bitmap A pointer to the icon’s bitmap image.

textmap A pointer to the icon’s text version of the bitmap.

5.7.2.5 #define CTK_ICON_ADD(icon, id) ctk_icon_add((structctk_widget ∗)icon, id)

Add an icon to the desktop.

Parameters:
icon The icon to be added.

id The process ID of the process that owns the icon.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.7 CTK application functions 33

5.7.2.6 #define CTK_LABEL(x, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h,
CTK_WIDGET_FLAG_INITIALIZER(0) text,

Instantiating macro for the ctk_label widget.

This macro is used when instantiating a ctk_label widget and is intended to be used together with a struct
assignment like this:

struct ctk_label lab =
{CTK_LABEL(0, 0, 5, 1, "Label")};

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

h The height of the label.

text The label text.

5.7.2.7 #define ctk_label_set_height(w, height) (w)→ widget.label.h = (height)

Set the height of a label.

Parameters:
w The CTK label widget.

height The new height of the label.

5.7.2.8 #define ctk_label_set_text(l, t) (l)→ text = (t)

Set the text of a label.

Parameters:
l The CTK label widget.

t The new text of the label.

5.7.2.9 #define CTK_SEPARATOR(x, y, w) NULL, NULL, x, y, CTK_WIDGET_SEPARATOR,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(0)

Instantiating macro for the ctk_separator widget.

This macro is used when instantiating a ctk_separator widget and is intended to be used together with a
struct assignment like this:

struct ctk_separator sep =
{CTK_SEPARATOR(0, 0, 23)};

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

34 Contiki 1.2-devel0 Module Documentation

5.7.2.10 #define CTK_TEXTENTRY(x, y, w, h, text, len)

Value:

NULL, NULL, x, y, CTK_WIDGET_TEXTENTRY, w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, len, \
CTK_TEXTENTRY_NORMAL, 0, 0

Instantiating macro for the ctk_textentry widget.

This macro is used when instantiating a ctk_textentry widget and is intended to be used together with a
struct assignment like this:

struct ctk_textentry tentry =
{CTK_TEXTENTRY(0, 0, 30, 1, textbuffer, 50)};

Note:
The height of the text entry widget is obsolete and not intended to be used.

Parameters:
x The x position of the widget, relative to the widget’s window.

y The y position of the widget, relative to the widget’s window.

w The widget’s width.

h The text entry height (obsolete).

text A pointer to the buffer that should be edited.

len The length of the text buffer

5.7.2.11 #define CTK_TEXTENTRY_CLEAR(e) do {memset((e)→ text, 0, (e)→ len); (e)→ xpos
= 0;} while(0);

Clears a text entry widget and sets the cursor to the start of the text line.

Parameters:
e The text entry widget to be cleared.

5.7.2.12 #define CTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (structctk_widget ∗)widg)

Add a widget to a window.

Parameters:
win The window to which the widget should be added.

widg The widget to be added.

5.7.2.13 #define CTK_WIDGET_FOCUS(win, widg) (win)→ focused = (structctk_widget
∗)(widg)

Set focus to a widget.

Parameters:
win The widget’s window.

widg The widget

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.7 CTK application functions 35

5.7.2.14 #define CTK_WIDGET_REDRAW(widg) ctk_widget_redraw((structctk_widget ∗)widg)

Add a widget to the redraw queue.

Parameters:
widg The widget to be redrawn.

5.7.2.15 #define CTK_WIDGET_SET_WIDTH(widget, width)

Value:

do { \
((struct ctk_widget *)(widget))->w = (width); } while(0)

Sets the width of a widget.

Parameters:
widget The widget.

width The width of the widget, in characters.

5.7.2.16 #define CTK_WIDGET_SET_XPOS(w, xpos) ((structctk_widget ∗)(w))→ x = (xpos)

Sets the x position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

xpos The x position of the widget.

5.7.2.17 #define CTK_WIDGET_SET_YPOS(w, ypos) ((structctk_widget ∗)(w))→ y = (ypos)

Sets the y position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

ypos The y position of the widget.

5.7.2.18 #define CTK_WIDGET_TYPE(w) ((w)→ type)

Obtain the type of a widget.

Parameters:
w The widget.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

36 Contiki 1.2-devel0 Module Documentation

5.7.2.19 #define CTK_WIDGET_XPOS(w) (((structctk_widget ∗)(w))→ x)

Retrieves the x position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

Returns:
The x position of the widget.

5.7.2.20 #define CTK_WIDGET_YPOS(w) (((structctk_widget ∗)(w))→ y)

Retrieves the y position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

Returns:
The y position of the widget.

5.7.3 Function Documentation

5.7.3.1 unsigned char ctk_desktop_height (struct ctk_desktop∗ d)

Gets the height of the desktop.

Parameters:
d The desktop.

Returns:
The height of the desktop, in characters.

Note:
The d parameter is currently unused and must be set to NULL.

5.7.3.2 void ctk_desktop_redraw (struct ctk_desktop∗ d)

Redraw the entire desktop.

Parameters:
d The desktop to be redrawn.

Note:
Currently the parameter d is not used, but must be set to NULL.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.7 CTK application functions 37

5.7.3.3 unsigned char ctk_desktop_width (struct ctk_desktop∗ d)

Gets the width of the desktop.

Parameters:
d The desktop.

Returns:
The width of the desktop, in characters.

Note:
The d parameter is currently unused and must be set to NULL.

5.7.3.4 void ctk_dialog_new (CC_REGISTER_ARG structctk_window ∗ dialog, unsigned charw,
unsigned charh)

Creates a new dialog.

This function only sets up the internal structure of thectk_windowstruct but does not open the dialog. The
dialog must be explicitly opened by calling thectk_dialog_open()function.

Parameters:
dialog The dialog to be created.

w The width of the dialog.

h The height of the dialog.

5.7.3.5 void ctk_dialog_open (structctk_window ∗ d)

Open a dialog box.

Parameters:
d The dialog to be opened.

5.7.3.6 void ctk_icon_add (CC_REGISTER_ARG structctk_widget ∗ icon, ek_id_t id)

Add an icon to the desktop.

Parameters:
icon The icon to be added.

id The process ID of the process that owns the icon.

Here is the call graph for this function:

ctk_icon_add ctk_widget_add

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

38 Contiki 1.2-devel0 Module Documentation

5.7.3.7 void ctk_menu_add (structctk_menu∗ menu)

Add a menu to the menu bar.

Parameters:
menu The menu to be added.

Note:
Do not call this function multiple times for the same menu, as no check is made to see if the menu
already is in the menu bar.

5.7.3.8 void ctk_menu_new (CC_REGISTER_ARG structctk_menu∗ menu, char ∗ title)

Creates a new menu.

This function sets up the internal structure of the menu, but does not add it to the menubar. Use the function
ctk_menu_add()for that purpose.

Parameters:
menu The menu to be created.

title The title of the menu.

5.7.3.9 void ctk_menu_remove (structctk_menu∗ menu)

Remove a menu from the menu bar.

Parameters:
menu The menu to be removed.

5.7.3.10 unsigned char ctk_menuitem_add (CC_REGISTER_ARG structctk_menu∗ menu, char
∗ name)

Adds a menu item to a menu.

In CTK, each menu item is identified by a number which is unique within each menu. When a menu item
is selected, a ctk_menuitem_activated signal is emitted and the menu item number is passed as signal data
with the signal.

Parameters:
menu The menu to which the menu item should be added.

name The name of the menu item.

Returns:
The number of the menu item.

5.7.3.11 unsigned char ctk_mode_get (void)

Retrieves the current CTK mode.

Returns:
The current CTK mode.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.7 CTK application functions 39

5.7.3.12 void ctk_mode_set (unsigned charm)

Sets the current CTK mode.

The CTK mode can be either CTK_MODE_NORMAL, CTK_MODE_SCREENSAVER or CTK_-
MODE_EXTERNAL. CTK_MODE_NORMAL is the normal mode, in which keypresses and mouse
pointer movements are processed and the screen is redrawn. In CTK_MODE_SCREENSAVER, no screen
redraws are performed and the first key press or pointer movement will cause the ctk_signal_screensaver_-
stop to be emitted. In the CTK_MODE_EXTERNAL mode, key presses and pointer movements are ig-
nored and no screen redraws are made.

Parameters:
m The mode.

5.7.3.13 void CC_FASTCALL ctk_widget_add (CC_REGISTER_ARG structctk_window ∗
window, CC_REGISTER_ARG struct ctk_widget ∗ widget)

Adds a widget to a window.

This function adds a widget to a window. The order of which the widgets are added is important, as it sets
the order to which widgets are cycled with the widget selection keys.

Parameters:
window The window to which the widhet should be added.

widget The widget to be added.

5.7.3.14 void ctk_widget_redraw (structctk_widget ∗ widget)

Redraws a widget.

This function will set a flag which causes the widget to be redrawn next time the CTK process is scheduled.

Parameters:
widget The widget that is to be redrawn.

Note:
This function should usually not be called directly since it requires typecasting of the widget param-
eter. The wrapper macroCTK_WIDGET_REDRAW()does the required typecast and should be used
instead.

5.7.3.15 void ctk_window_clear (structctk_window ∗ w)

Remove all widgets from a window.

Parameters:
w The window to be cleared.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

40 Contiki 1.2-devel0 Module Documentation

5.7.3.16 void ctk_window_close (structctk_window ∗ w)

Close a window if it is open.

If the window is not open, this function does nothing.

Parameters:
w The window to be closed.

5.7.3.17 void ctk_window_new (structctk_window ∗ window, unsigned charw, unsigned charh,
char ∗ title)

Create a new window.

Creates a new window. The memory for the window structure must already be allocated by the caller, and
is usually done with a static declaration.

This function sets up the internal structure of thectk_windowstruct and creates the move and close buttons,
but it does not open the window. The window must be explicitly opened by calling thectk_window_open()
function.

Parameters:
window The window to be created.

w The width of the new window.

h The height of the new window.

title The title of the new window.

5.7.3.18 void ctk_window_open (CC_REGISTER_ARG structctk_window ∗ w)

Open a window, or bring window to front if already open.

Parameters:
w The window to be opened.

5.7.3.19 void ctk_window_redraw (structctk_window ∗ w)

Redraw a window.

This function redraws the window, but only if it is the foremost one on the desktop.

Parameters:
w The window to be redrawn.

Here is the call graph for this function:

ctk_window_redraw

ctk_draw_dialog

ctk_draw_window

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.7 CTK application functions 41

5.7.4 Variable Documentation

5.7.4.1 ek_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

The signal is broadcast to all listeners.

5.7.4.2 ek_event_tctk_signal_keypress

Emitted for every key being pressed.

The key is passed as signal data.

5.7.4.3 ek_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

The number of the menu item is passed as signal data.

5.7.4.4 ek_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

The button is passed as signal data to the listening process.

5.7.4.5 ek_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

A NULL pointer is passed as signal data and it is up to the listening process to check the position of the
mouse using the CTK mouse API.

5.7.4.6 ek_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

A pointer to the widget is passed as signal data.

5.7.4.7 ek_event_tctk_signal_widget_select

Emitted when a widget is selected.

A pointer to the widget is passed as signal data.

5.7.4.8 ek_event_tctk_signal_window_close

Emitted when a window is closed.

A pointer to the window is passed as signal data.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

42 Contiki 1.2-devel0 Module Documentation

5.8 The CTK graphical user interface.

5.8.1 Detailed Description

The Contiki Toolkit (CTK) provides the graphical user interface for the Contiki system.

Files

• file ctk.h

CTK header file.

• file ctk.c

The Contiki Toolkit CTK, the Contiki GUI.

• file ctk-draw.h

CTK screen drawing module interface, ctk-draw.

Modules

• groupCTK application functions
• groupCTK device driver functions

Functions

• void ctk_init (void)

Initializes the Contiki Toolkit.

• void ctk_mode_set(unsigned char mode)

Sets the current CTK mode.

• unsigned charctk_mode_get(void)

Retrieves the current CTK mode.

• void ctk_window_new(structctk_window∗window, unsigned char w, unsigned char h, char∗title)

Create a new window.

• void ctk_window_clear(structctk_window∗w)

Remove all widgets from a window.

• void ctk_window_close(structctk_window∗w)

Close a window if it is open.

• void ctk_window_redraw(structctk_window∗w)

Redraw a window.

• void ctk_dialog_open(structctk_window∗d)

Open a dialog box.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.8 The CTK graphical user interface. 43

• void ctk_dialog_close(void)

Close the dialog box, if one is open.

• void ctk_menu_add(structctk_menu∗menu)

Add a menu to the menu bar.

• void ctk_menu_remove(structctk_menu∗menu)

Remove a menu from the menu bar.

5.8.2 Function Documentation

5.8.2.1 void ctk_dialog_open (structctk_window ∗ d)

Open a dialog box.

Parameters:
d The dialog to be opened.

5.8.2.2 void ctk_init (void)

Initializes the Contiki Toolkit.

This function must be called before any other CTK function, but after the inizialitation of the dispatcher
module.

Here is the call graph for this function:

ctk_init

ctk_draw_init

ctk_menu_new

ek_alloc_event

ek_start ek_post

5.8.2.3 void ctk_menu_add (structctk_menu∗ menu)

Add a menu to the menu bar.

Parameters:
menu The menu to be added.

Note:
Do not call this function multiple times for the same menu, as no check is made to see if the menu
already is in the menu bar.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

44 Contiki 1.2-devel0 Module Documentation

5.8.2.4 void ctk_menu_remove (structctk_menu∗ menu)

Remove a menu from the menu bar.

Parameters:
menu The menu to be removed.

5.8.2.5 unsigned char ctk_mode_get (void)

Retrieves the current CTK mode.

Returns:
The current CTK mode.

5.8.2.6 void ctk_mode_set (unsigned charm)

Sets the current CTK mode.

The CTK mode can be either CTK_MODE_NORMAL, CTK_MODE_SCREENSAVER or CTK_-
MODE_EXTERNAL. CTK_MODE_NORMAL is the normal mode, in which keypresses and mouse
pointer movements are processed and the screen is redrawn. In CTK_MODE_SCREENSAVER, no screen
redraws are performed and the first key press or pointer movement will cause the ctk_signal_screensaver_-
stop to be emitted. In the CTK_MODE_EXTERNAL mode, key presses and pointer movements are ig-
nored and no screen redraws are made.

Parameters:
m The mode.

5.8.2.7 void ctk_window_clear (structctk_window ∗ w)

Remove all widgets from a window.

Parameters:
w The window to be cleared.

5.8.2.8 void ctk_window_close (structctk_window ∗ w)

Close a window if it is open.

If the window is not open, this function does nothing.

Parameters:
w The window to be closed.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.8 The CTK graphical user interface. 45

5.8.2.9 void ctk_window_new (structctk_window ∗ window, unsigned charw, unsigned charh,
char ∗ title)

Create a new window.

Creates a new window. The memory for the window structure must already be allocated by the caller, and
is usually done with a static declaration.

This function sets up the internal structure of thectk_windowstruct and creates the move and close buttons,
but it does not open the window. The window must be explicitly opened by calling thectk_window_open()
function.

Parameters:
window The window to be created.

w The width of the new window.

h The height of the new window.

title The title of the new window.

5.8.2.10 void ctk_window_redraw (structctk_window ∗ w)

Redraw a window.

This function redraws the window, but only if it is the foremost one on the desktop.

Parameters:
w The window to be redrawn.

Here is the call graph for this function:

ctk_window_redraw

ctk_draw_dialog

ctk_draw_window

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

46 Contiki 1.2-devel0 Module Documentation

5.9 CTK device driver functions

5.9.1 Detailed Description

The CTK device driver functions are divided into two modules, the ctk-draw module and the ctk-arch
module. The purpose of the ctk-arch and the ctk-draw modules is to act as an interface between the CTK
and the actual hardware of the system on which Contiki is run. The ctk-arch takes care of the keyboard input
from the user, and the ctk-draw is responsible for drawing the CTK desktop, windows and user interface
widgets onto the actual screen.

More information about the ctk-draw and the ctk-arch modules can be found in the sectionsThe ctk-draw
moduleandThe ctk-arch module.

Data Structures

• structctk_widget

The generic CTK widget structure that contains all other widget structures.

• structctk_window

Representation of a CTK window.

• structctk_menuitem

Representation of an individual menu item.

• structctk_menu

Representation of an individual menu.

• structctk_menus

Representation of the menu bar.

Defines

• #defineCTK_WIDGET_SEPARATOR1

Widget number: The CTK separator widget.

• #defineCTK_WIDGET_LABEL 2

Widget number: The CTK label widget.

• #defineCTK_WIDGET_BUTTON3

Widget number: The CTK button widget.

• #defineCTK_WIDGET_HYPERLINK4

Widget number: The CTK hyperlink widget.

• #defineCTK_WIDGET_TEXTENTRY5

Widget number: The CTK textentry widget.

• #defineCTK_WIDGET_BITMAP6

Widget number: The CTK bitmap widget.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.9 CTK device driver functions 47

• #defineCTK_WIDGET_ICON7

Widget number: The CTK icon widget.

• #defineCTK_FOCUS_NONE0

Widget focus flag: no focus.

• #defineCTK_FOCUS_WIDGET1

Widget focus flag: widget has focus.

• #defineCTK_FOCUS_WINDOW2

Widget focus flag: widget’s window is the foremost one.

• #defineCTK_FOCUS_DIALOG4

Widget focus flag: widget is in a dialog.

Functions

• void ctk_draw_init(void)

The initialization function.

• void ctk_draw_clear(unsigned char clipy1, unsigned char clipy2)

Clear the screen between the clip bounds.

• void ctk_draw_clear_window(struct ctk_window ∗window, unsigned char focus, unsigned char
clipy1, unsigned char clipy2)

Draw the window background.

• void ctk_draw_window(struct ctk_window∗window, unsigned char focus, unsigned char clipy1,
unsigned char clipy2)

Draw a window onto the screen.

• void ctk_draw_dialog(structctk_window∗dialog)

Draw a dialog onto the screen.

• void ctk_draw_widget(structctk_widget∗w, unsigned char focus, unsigned char clipy1, unsigned
char clipy2)

Draw a widget on a window.

5.9.1.1 The ctk-draw module

In order to work efficiently even on limited systems, CTK uses a simple coordinate system, where the screen
is addressed using character coordinates instead of pixel coordinates. This makes it trivial to implement
the coordinate system on a text-based screen, and significantly reduces complexity for pixel based screen
systems.

The top left of the screen is (0,0) with x and y coordinates growing downwards and to the right.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

48 Contiki 1.2-devel0 Module Documentation

It is the responsibility of the ctk-draw module to keep track of the screen size and must implement the two
functions ctk_draw_width() and ctk_draw_height(), which are used by the CTK for querying the screen
size. The functions must return the width and the height of the ctk-draw screen in character coordinates.

The ctk-draw module is responsible for drawing CTK windows onto the screen through the functionctk_-
draw_window().. A pseudo-code implementation of this function might look like this:

ctk_draw_window(window, focus, clipy1, clipy2) {
draw_window_borders(window, focus, clipy1, clipy2);
foreach(widget, window->inactive) {

ctk_draw_widget(widget, focus, clipy1, clipy2);
}
foreach(widget, window->active) {

if(widget == window->focused) {
ctk_draw_widget(widget, focus | CTK_FOCUS_WIDGET,

clipy1, clipy2);
} else {

ctk_draw_widget(widget, focus, clipy1, clipy2);
}

}
}

Where draw_window_borders() draws the window borders (also between clipy1 and clipy2). Thectk_-
draw_widget()function is explained below. Notice how the clipy1 and clipy2 parameters are passed to all
other functions; every function needs to know the boundaries within which they are allowed to draw.

In order to aid in implementing a ctk-draw module, a text-based ctk-draw called ctk-conio has already been
implemented. It conforms to the Borland conio C library, and a skeleton implementation of said library
exists in lib/libconio.c. If a more machine specific ctk-draw module is to be implemented, the instructions
in this file should be followed.

5.9.1.2 The ctk-arch module

The ctk-arch module deals with keyboard input from the underlying target system on which Contiki is
running. The ctk-arch manages a keyboard input queue that is queried using the two functions ctk_arch_-
keyavail() and ctk_arch_getkey().

5.9.2 Function Documentation

5.9.2.1 void ctk_draw_clear (unsigned charclipy1, unsigned charclipy2)

Clear the screen between the clip bounds.

This function should clear the screen between the y coordinates "clipy1" and "clipy2", including the line at
y coordinate "clipy1", but not the line at y coordinate "clipy2".

Note:
This function may be used to draw a background image (wallpaper) on the desktop; it does not neces-
sarily "clear" the screen.

Parameters:
clipy1 The lower y coordinate of the clip region.

clipy2 The upper y coordinate of the clip region.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.9 CTK device driver functions 49

5.9.2.2 void ctk_draw_clear_window (structctk_window ∗ window, unsigned charfocus, unsigned
char clipy1, unsigned charclipy2)

Draw the window background.

This function will be called by the CTK before a window will be completely redrawn.The function is
supposed to draw the window background, excluding window borders as these should be drawn by the
function that actually draws the window, between "clipy1" and "clipy2".

Note:
This function does not necessarily have to clear the window - it can be used for drawing a background
pattern in the window as well.

Parameters:
window The window for which the background should be drawn.

focus The focus of the window, either CTK_FOCUS_NONE for a background window, or CTK_-
FOCUS_WINDOW for the foreground window.

clipy1 The lower y coordinate of the clip region.

clipy2 The upper y coordinate of the clip region.

5.9.2.3 void ctk_draw_dialog (structctk_window ∗ dialog)

Draw a dialog onto the screen.

In CTK, a dialog is similar to a window, with the only exception being that they are drawn in a different
style. Also, since dialogs always are drawn on top of everything else, they do not need to be drawn within
any special boundaries.

Note:
This function can usually be implemented so that it uses the same widget drawing code as thectk_-
draw_window()function.

Parameters:
dialog The dialog that is to be drawn.

5.9.2.4 void ctk_draw_init (void)

The initialization function.

This function is supposed to get the screen ready for drawing, and may be called at more than one time
during the operation of the system.

5.9.2.5 void ctk_draw_widget (structctk_widget ∗ w, unsigned charfocus, unsigned charclipy1,
unsigned charclipy2)

Draw a widget on a window.

This function is used for drawing a CTK widgets onto the screem is likely to be the most complex function
in the ctk-draw module. Still, it is straightforward to implement as it can be written in an incremental
fashion, starting with a single widget type and adding more widget types, one at a time.

The ctk-draw module may exploit how the CTK focus constants are defined in order to use a look-up table
for the colors. The CTK focus constants are defined in the file ctk/ctk.h as follows:

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

50 Contiki 1.2-devel0 Module Documentation

#define CTK_FOCUS_NONE 0
#define CTK_FOCUS_WIDGET 1
#define CTK_FOCUS_WINDOW 2
#define CTK_FOCUS_DIALOG 4

This gives the following table:

0: CTK_FOCUS_NONE (Background window, non-focused widget)
1: CTK_FOCUS_WIDGET (Background window, focused widget)
2: CTK_FOCUS_WINDOW (Foreground window, non-focused widget)
3: CTK_FOCUS_WINDOW | CTK_FOCUS_WIDGET

(Foreground window, focused widget)
4: CTK_FOCUS_DIALOG (Dialog, non-focused widget)
5: CTK_FOCUS_DIALOG | CTK_FOCUS_WIDGET

(Dialog, focused widget)

Parameters:
w The widget to be drawn.

focus The focus of the widget.

clipy1 The lower y coordinate of the clip region.

clipy2 The upper y coordinate of the clip region.

5.9.2.6 void ctk_draw_window (structctk_window ∗ window, unsigned charfocus, unsigned char
clipy1, unsigned charclipy2)

Draw a window onto the screen.

This function is called by the CTK when a window should be drawn on the screen. The ctk-draw layer is
free to choose how the window will appear on screen; with or without window borders and the style of the
borders, with or without transparent window background and how the background shall look, etc.

Parameters:
window The window which is to be drawn.

focus Specifies if the window should be drawn in foreground or background colors and can be either
CTK_FOCUS_NONE or CTK_FOCUS_WINDOW. Windows with a focus of CTK_FOCUS_-
WINDOW is usually drawn in a brighter color than those with CTK_FOCUS_NONE.

clipy1 Specifies the first lines on screen that actually should be drawn, in screen coordinates (line 1 is
the first line below the menus).

clipy2 Specifies the last + 1 line on screen that should be drawn, in screen coordinates (line 1 is the
first line below the menus)

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.10 The uIP TCP/IP stack 51

5.10 The uIP TCP/IP stack

Files

• file uip.h

Header file for the uIP TCP/IP stack.

• file uip.c

The uIP TCP/IP stack code.

Modules

• groupuIP configuration functions
• groupuIP initialization functions
• groupuIP device driver functions
• groupuIP application functions
• groupuIP conversion functions
• groupuIP Address Resolution Protocol
• groupuIP TCP throughput booster hack
• groupuIP hostname resolver functions
• groupUiparch

Data Structures

• structuip_conn

Representation of a uIP TCP connection.

• structuip_udp_conn

Representation of a uIP UDP connection.

• structuip_stats

The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is set to 1.

Functions

• void uip_init (void)

uIP initialization function.

• uip_conn∗ uip_connect(u16_t∗ripaddr, u16_t rport)

Connect to a remote host using TCP.

• uip_udp_conn∗ uip_udp_new(u16_t∗ripaddr, u16_t rport)

Set up a new UDP connection.

• void uip_unlisten(u16_t port)

Stop listening to the specified port.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

52 Contiki 1.2-devel0 Module Documentation

• void uip_listen(u16_t port)

Start listening to the specified port.

• u16_thtons(u16_t val)

Convert 16-bit quantity from host byte order to network byte order.

Variables

• u8_t∗ uip_appdata

Pointer to the application data in the packet buffer.

• uip_statsuip_stat

The uIP TCP/IP statistics.

• u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

• u8_t∗ uip_appdata

Pointer to the application data in the packet buffer.

• u8_tuip_acc32[4]

4-byte array used for the 32-bit sequence number calculations.

5.10.0.7 The uIP TCP/IP stack

The uIP TCP/IP stack provides Internet communication abilities to Contiki.

5.10.1 uIP introduction

With the success of the Internet, the TCP/IP protocol suite has become a global standard for communica-
tion. TCP/IP is the underlying protocol used for web page transfers, e-mail transmissions, file transfers, and
peer-to-peer networking over the Internet. For embedded systems, being able to run native TCP/IP makes
it possible to connect the system directly to an intranet or even the global Internet. Embedded devices with
full TCP/IP support will be first-class network citizens, thus being able to fully communicate with other
hosts in the network.

Traditional TCP/IP implementations have required far too much resources both in terms of code size and
memory usage to be useful in small 8 or 16-bit systems. Code size of a few hundred kilobytes and RAM
requirements of several hundreds of kilobytes have made it impossible to fit the full TCP/IP stack into
systems with a few tens of kilobytes of RAM and room for less than 100 kilobytes of code.

The uIP implementation is designed to have only the absolute minimal set of features needed for a full
TCP/IP stack. It can only handle a single network interface and does not implement UDP, but focuses on
the IP, ICMP and TCP protocols. uIP is written in the C programming language.

Many other TCP/IP implementations for small systems assume that the embedded device always will com-
municate with a full-scale TCP/IP implementation running on a workstation-class machine. Under this
assumption, it is possible to remove certain TCP/IP mechanisms that are very rarely used in such situa-
tions. Many of those mechanisms are essential, however, if the embedded device is to communicate with

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.10 The uIP TCP/IP stack 53

another equally limited device, e.g., when running distributed peer-to-peer services and protocols. uIP is
designed to be RFC compliant in order to let the embedded devices to act as first-class network citizens.
The uIP TCP/IP implementation that is not tailored for any specific application.

5.10.2 TCP/IP communication

The full TCP/IP suite consists of numerous protocols, ranging from low level protocols such as ARP which
translates IP addresses to MAC addresses, to application level protocols such as SMTP that is used to
transfer e-mail. The uIP is mostly concerned with the TCP and IP protocols and upper layer protocols will
be refered to as “the application”. Lower layer protocols are often implemented in hardware or firmware
and will be referred to as “the network device” that are controlled by the network device driver.

TCP provides a reliable byte stream to the upper layer protocols. It breaks the byte stream into appropriately
sized segments and each segment is sent in its own IP packet. The IP packets are sent out on the network
by the network device driver. If the destination is not on the physically connected network, the IP packet
is forwarded onto another network by a router that is situated between the two networks. If the maximum
packet size of the other network is smaller than the size of the IP packet, the packet is fragmented into
smaller packets by the router. If possible, the size of the TCP segments are chosen so that fragmentation
is minimized. The final recipient of the packet will have to reassemble any fragmented IP packets before
they can be passed to higher layers.

The formal requirements for the protocols in the TCP/IP stack is specified in a number of RFC documents
published by the Internet Engineering Task Force, IETF. Each of the protocols in the stack is defined in one
more RFC documents and RFC1122 collects all requirements and updates the previous RFCs.

The RFC1122 requirements can be divided into two categories; those that deal with the host to host com-
munication and those that deal with communication between the application and the networking stack.
An example of the first kind is "A TCP MUST be able to receive a TCP option in any segment" and an
example of the second kind is "There MUST be a mechanism for reporting soft TCP error conditions to
the application." A TCP/IP implementation that violates requirements of the first kind may not be able
to communicate with other TCP/IP implementations and may even lead to network failures. Violation of
the second kind of requirements will only affect the communication within the system and will not affect
host-to-host communication.

In our implementations, we have implemented all RFC requirements that affect host-to-host communica-
tion. However, in order to reduce code size, we have removed certain mechanisms in the interface between
the application and the stack, such as the soft error reporting mechanism and dynamically configurable
type-of-service bits for TCP connections. Since there are only very few applications that make use of those
features they can be removed without loss of generality.

5.10.3 Memory management

In the architectures for which uIP is intended, RAM is the most scarce resource. With only a few kilobytes
of RAM available for the TCP/IP stack to use, mechanisms used in traditional TCP/IP cannot be directly
applied.

The uIP stack does not use explicit dynamic memory allocation. Instead, it uses a single global buffer
for holding packets and has a fixed table for holding connection state. The global packet buffer is large
enough to contain one packet of maximum size. When a packet arrives from the network, the device driver
places it in the global buffer and calls the TCP/IP stack. If the packet contains data, the TCP/IP stack
will notify the corresponding application. Because the data in the buffer will be overwritten by the next
incoming packet, the application will either have to act immediately on the data or copy the data into a
secondary buffer for later processing. The packet buffer will not be overwritten by new packets before the
application has processed the data. Packets that arrive when the application is processing the data must be

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

54 Contiki 1.2-devel0 Module Documentation

queued, either by the network device or by the device driver. Most single-chip Ethernet controllers have
on-chip buffers that are large enough to contain at least 4 maximum sized Ethernet frames. Devices that
are handled by the processor, such as RS-232 ports, can copy incoming bytes to a separate buffer during
application processing. If the buffers are full, the incoming packet is dropped. This will cause performance
degradation, but only when multiple connections are running in parallel. This is because uIP advertises
a very small receiver window, which means that only a single TCP segment will be in the network per
connection.

In uIP, the same global packet buffer that is used for incoming packets is also used for the TCP/IP headers
of outgoing data. If the application sends dynamic data, it may use the parts of the global packet buffer that
are not used for headers as a temporary storage buffer. To send the data, the application passes a pointer to
the data as well as the length of the data to the stack. The TCP/IP headers are written into the global buffer
and once the headers have been produced, the device driver sends the headers and the application data out
on the network. The data is not queued for retransmissions. Instead, the application will have to reproduce
the data if a retransmission is necessary.

The total amount of memory usage for uIP depends heavily on the applications of the particular device in
which the implementations are to be run. The memory configuration determines both the amount of traffic
the system should be able to handle and the maximum amount of simultaneous connections. A device that
will be sending large e-mails while at the same time running a web server with highly dynamic web pages
and multiple simultaneous clients, will require more RAM than a simple Telnet server. It is possible to run
the uIP implementation with as little as 200 bytes of RAM, but such a configuration will provide extremely
low throughput and will only allow a small number of simultaneous connections.

5.10.4 Application program interface (API)

The Application Program Interface (API) defines the way the application program interacts with the TCP/IP
stack. The most commonly used API for TCP/IP is the BSD socket API which is used in most Unix systems
and has heavily influenced the Microsoft Windows WinSock API. Because the socket API uses stop-and-
wait semantics, it requires support from an underlying multitasking operating system. Since the overhead
of task management, context switching and allocation of stack space for the tasks might be too high in the
intended uIP target architectures, the BSD socket interface is not suitable for our purposes.

Instead, uIP uses an event driven interface where the application is invoked in response to certain events.
An application running on top of uIP is implemented as a C function that is called by uIP in response to
certain events. uIP calls the application when data is received, when data has been successfully delivered to
the other end of the connection, when a new connection has been set up, or when data has to be retransmit-
ted. The application is also periodically polled for new data. The application program provides only one
callback function; it is up to the application to deal with mapping different network services to different
ports and connections. Because the application is able to act on incoming data and connection requests as
soon as the TCP/IP stack receives the packet, low response times can be achieved even in low-end systems.

uIP is different from other TCP/IP stacks in that it requires help from the application when doing re-
transmissions. Other TCP/IP stacks buffer the transmitted data in memory until the data is known to be
successfully delivered to the remote end of the connection. If the data needs to be retransmitted, the stack
takes care of the retransmission without notifying the application. With this approach, the data has to be
buffered in memory while waiting for an acknowledgment even if the application might be able to quickly
regenerate the data if a retransmission has to be made.

In order to reduce memory usage, uIP utilizes the fact that the application may be able to regenerate sent
data and lets the application take part in retransmissions. uIP does not keep track of packet contents af-
ter they have been sent by the device driver, and uIP requires that the application takes an active part in
performing the retransmission. When uIP decides that a segment should be retransmitted, it calls the appli-
cation with a flag set indicating that a retransmission is required. The application checks the retransmission
flag and produces the same data that was previously sent. From the application’s standpoint, performing

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.10 The uIP TCP/IP stack 55

a retransmission is not different from how the data originally was sent. Therefore the application can be
written in such a way that the same code is used both for sending data and retransmitting data. Also, it is
important to note that even though the actual retransmission operation is carried out by the application, it
is the responsibility of the stack to know when the retransmission should be made. Thus the complexity of
the application does not necessarily increase because it takes an active part in doing retransmissions.

5.10.4.1 Application events

The application must be implemented as a C function, UIP_APPCALL(), that uIP calls whenever an event
occurs. Each event has a corresponing test function that is used to distinguish between different events.
The functions are implemented as C macros that will evaluate to either zero or non-zero. Note that certain
events can happen in conjunction with each other (i.e., new data can arrive at the same time as data is
acknowledged).

5.10.4.2 The connection pointer

When the application is called by uIP, the global variableuip_connis set to point to theuip_connstructure
for the current connection. This can be used to distinguish between different services. A typical use would
be to inspect the uip_conn->lport (the local TCP port number) to decide which service the connection
should provide. For instance, an application might decide to act as an HTTP server if the value of uip_-
conn->lport is equal to 80 and act as a TELNET server if the value is 23.

5.10.4.3 Receiving data

If the uIP test functionuip_newdata()is non-zero, the remote host of the connection has sent new data. The
uip_appdata pointer point to the actual data. The size of the data is obtained through the uIP functionuip_-
datalen(). The data is not buffered by uIP, but will be overwritten after the application function returns, and
the application will therefor have to either act directly on the incoming data, or by itself copy the incoming
data into a buffer for later processing.

5.10.4.4 Sending data

When sending data, the application must check the number of available bytes in the send window and
adjust the length of the data to be sent accordingly. The size of the send window is dictated by the memory
configuration as well as the buffer space announced by the remote host. If no buffer space is available, the
application has to defer the send and wait until later.

The application sends data by using the uIP functionuip_send(). Theuip_send()function takes two argu-
ments; a pointer to the data to be sent and the length of the data. If the application needs RAM space for
producing the actual data that should be sent, the packet buffer (pointed to by the uip_appdata pointer) can
be used for this purpose.

The application can send only one chunk of data at a time on a connection and it is not possible to call
uip_send()more than once per application invocation; only the data from the last call will be sent.

5.10.4.5 Retransmitting data

Retransmissions are driven by the periodic TCP timer. Every time the periodic timer is invoked, the re-
transmission timer for each connection is decremented. If the timer reaches zero, a retransmission should
be made. As uIP does not keep track of packet contents after they have been sent by the device driver, uIP
requires that the application takes an active part in performing the retransmission. When uIP decides that a

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

56 Contiki 1.2-devel0 Module Documentation

segment should be retransmitted, the application function is called with theuip_rexmit()flag set, indicating
that a retransmission is required.

The application must check theuip_rexmit()flag and produce the same data that was previously sent. From
the application’s standpoint, performing a retransmission is not different from how the data originally was
sent. Therefor, the application can be written in such a way that the same code is used both for sending data
and retransmitting data. Also, it is important to note that even though the actual retransmission operation is
carried out by the application, it is the responsibility of the stack to know when the retransmission should
be made. Thus the complexity of the application does not necessarily increase because it takes an active
part in doing retransmissions.

5.10.4.6 Closing connections

The application closes the current connection by calling theuip_close()during an application call. This
will cause the connection to be cleanly closed. In order to indicate a fatal error, the application might want
to abort the connection and does so by calling theuip_abort()function.

If the connection has been closed by the remote end, the test functionuip_closed()is true. The application
may then do any necessary cleanups.

5.10.4.7 Reporting errors

There are two fatal errors that can happen to a connection, either that the connection was aborted by the
remote host, or that the connection retransmitted the last data too many times and has been aborted. uIP
reports this by calling the application function. The application can use the two test functionsuip_aborted()
anduip_timedout()to test for those error conditions.

5.10.4.8 Polling

When a connection is idle, uIP polls the application every time the periodic timer fires. The application
uses the test functionuip_poll() to check if it is being polled by uIP.

The polling event has two purposes. The first is to let the application periodically know that a connection is
idle, which allows the application to close connections that have been idle for too long. The other purpose
is to let the application send new data that has been produced. The application can only send data when
invoked by uIP, and therefore the poll event is the only way to send data on an otherwise idle connection.

5.10.4.9 Listening ports

uIP maintains a list of listening TCP ports. A new port is opened for listening with theuip_listen()function.
When a connection request arrives on a listening port, uIP creates a new connection and calls the application
function. The test functionuip_connected()is true if the application was invoked because a new connection
was created.

The application can check the lport field in theuip_connstructure to check to which port the new connection
was connected.

5.10.4.10 Opening connections

New connections can be opened from within uIP by the functionuip_connect(). This function allocates a
new connection and sets a flag in the connection state which will open a TCP connection to the specified IP
address and port the next time the connection is polled by uIP. Theuip_connect()function returns a pointer

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.10 The uIP TCP/IP stack 57

to theuip_connstructure for the new connection. If there are no free connection slots, the function returns
NULL.

The functionuip_ipaddr()may be used to pack an IP address into the two element 16-bit array used by uIP
to represent IP addresses.

Two examples of usage are shown below. The first example shows how to open a connection to TCP port
8080 of the remote end of the current connection. If there are not enough TCP connection slots to allow
a new connection to be opened, theuip_connect()function returns NULL and the current connection is
aborted byuip_abort().

void connect_example1_app(void) {
if(uip_connect(uip_conn->ripaddr, 8080) == NULL) {

uip_abort();
}

}

The second example shows how to open a new connection to a specific IP address. No error checks are
made in this example.

void connect_example2(void) {
u16_t ipaddr[2];

uip_ipaddr(ipaddr, 192,168,0,1);
uip_connect(ipaddr, 8080);

}

5.10.5 uIP device drivers

From the network device driver’s standpoint, uIP consists of two C functions:uip_input() and uip_-
periodic(). The uip_input() function should be called by the device driver when an IP packet has been
received and put into the uip_buf packet buffer. Theuip_input()function will process the packet, and when
it returns an outbound packet may have been placed in the same uip_buf packet buffer (indicated by the
uip_len variable being non-zero). The device driver should then send out this packet onto the network.

Theuip_periodic()function should be invoked periodically once per connection by the device driver, typi-
cally one per second. This function is used by uIP to drive protocol timers and retransmissions, and when
it returns it may have placed an outbound packet in the uip_buf buffer.

5.10.6 Checksum calculation

5.10.7 Function Documentation

5.10.7.1 u16_t htons (u16_tval)

Convert 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For
converting constants to network byte order, use theHTONS()macro instead.

5.10.7.2 structuip_conn∗ uip_connect (u16_t∗ ripaddr, u16_tport)

Connect to a remote host using TCP.

This function is used to start a new connection to the specified port on the specied host. It allocates a new
connection identifier, sets the connection to the SYN_SENT state and sets the retransmission timer to 0.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

58 Contiki 1.2-devel0 Module Documentation

This will cause a TCP SYN segment to be sent out the next time this connection is periodically processed,
which usually is done within 0.5 seconds after the call touip_connect().

Note:
This function is avaliable only if support for active open has been configured by defining UIP_-
ACTIVE_OPEN to 1 in uipopt.h.
Since this function requires the port number to be in network byte order, a convertion usingHTONS()
or htons()is necessary.

u16_t ipaddr[2];

uip_ipaddr(ipaddr, 192,168,1,2);
uip_connect(ipaddr, HTONS(80));

Parameters:
ripaddr A pointer to a 4-byte array representing the IP address of the remote hot.

port A 16-bit port number in network byte order.

Returns:
A pointer to the uIP connection identifier for the new connection, or NULL if no connection could be
allocated.

Here is the call graph for this function:

uip_connect htons

5.10.7.3 void uip_init (void)

uIP initialization function.

This function should be called at boot up to initilize the uIP TCP/IP stack.

5.10.7.4 void uip_listen (u16_tport)

Start listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_listen(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

5.10.7.5 structuip_udp_conn∗ uip_udp_new (u16_t∗ ripaddr, u16_t rport)

Set up a new UDP connection.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.10 The uIP TCP/IP stack 59

Parameters:
ripaddr A pointer to a 4-byte structure representing the IP address of the remote host.

rport The remote port number in network byte order.

Returns:
Theuip_udp_connstructure for the new connection or NULL if no connection could be allocated.

5.10.7.6 void uip_unlisten (u16_tport)

Stop listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_unlisten(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

5.10.8 Variable Documentation

5.10.8.1 u8_t∗ uip_appdata

Pointer to the application data in the packet buffer.

This pointer points to the application data when the application is called. If the application wishes to send
data, the application may use this space to write the data into before callinguip_send().

5.10.8.2 u8_t∗ uip_appdata

Pointer to the application data in the packet buffer.

This pointer points to the application data when the application is called. If the application wishes to send
data, the application may use this space to write the data into before callinguip_send().

5.10.8.3 u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

The uip_buf array is used to hold incoming and outgoing packets. The device driver should place incoming
data into this buffer. When sending data, the device driver should read the link level headers and the TCP/IP
headers from this buffer. The size of the link level headers is configured by the UIP_LLH_LEN define.

Note:
The application data need not be placed in this buffer, so the device driver must read it from the place
pointed to by the uip_appdata pointer as illustrated by the following example:

void
devicedriver_send(void)
{

hwsend(&uip_buf[0], UIP_LLH_LEN);
hwsend(&uip_buf[UIP_LLH_LEN], 40);
hwsend(uip_appdata, uip_len - 40 - UIP_LLH_LEN);

}

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

60 Contiki 1.2-devel0 Module Documentation

5.10.8.4 structuip_statsuip_stat

The uIP TCP/IP statistics.

This is the variable in which the uIP TCP/IP statistics are gathered.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.11 uIP configuration functions 61

5.11 uIP configuration functions

5.11.1 Detailed Description

The uIP configuration functions are used for setting run-time parameters in uIP such as IP addresses.

Defines

• #defineuip_sethostaddr(addr)

Set the IP address of this host.

• #defineuip_gethostaddr(addr)

Get the IP address of this host.

• #defineuip_setdraddr(addr)

Set the default router’s IP address.

• #defineuip_setnetmask(addr)

Set the netmask.

• #defineuip_getdraddr(addr)

Get the default router’s IP address.

• #defineuip_getnetmask(addr)

Get the netmask.

• #defineuip_setethaddr(eaddr)

Specifiy the Ethernet MAC address.

5.11.2 Define Documentation

5.11.2.1 #define uip_getdraddr(addr)

Get the default router’s IP address.

Parameters:
addr A pointer to a 4-byte array that will be filled in with the IP address of the default router.

5.11.2.2 #define uip_gethostaddr(addr)

Get the IP address of this host.

The IP address is represented as a 4-byte array where the first octet of the IP address is put in the first
member of the 4-byte array.

Parameters:
addr A pointer to a 4-byte array that will be filled in with the currently configured IP address.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

62 Contiki 1.2-devel0 Module Documentation

5.11.2.3 #define uip_getnetmask(addr)

Get the netmask.

Parameters:
addr A pointer to a 4-byte array that will be filled in with the value of the netmask.

5.11.2.4 #define uip_setdraddr(addr)

Set the default router’s IP address.

Parameters:
addr A pointer to a 4-byte array containing the IP address of the default router.

5.11.2.5 #define uip_setethaddr(eaddr)

Specifiy the Ethernet MAC address.

The ARP code needs to know the MAC address of the Ethernet card in order to be able to respond to ARP
queries and to generate working Ethernet headers.

Note:
This macro only specifies the Ethernet MAC address to the ARP code. It cannot be used to change the
MAC address of the Ethernet card.

Parameters:
eaddr A pointer to a structuip_eth_addrcontaining the Ethernet MAC address of the Ethernet card.

5.11.2.6 #define uip_sethostaddr(addr)

Set the IP address of this host.

The IP address is represented as a 4-byte array where the first octet of the IP address is put in the first
member of the 4-byte array.

Parameters:
addr A pointer to a 4-byte representation of the IP address.

5.11.2.7 #define uip_setnetmask(addr)

Set the netmask.

Parameters:
addr A pointer to a 4-byte array containing the IP address of the netmask.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.12 uIP initialization functions 63

5.12 uIP initialization functions

5.12.1 Detailed Description

The uIP initialization functions are used for booting uIP.

Functions

• void uip_init (void)

uIP initialization function.

5.12.2 Function Documentation

5.12.2.1 void uip_init (void)

uIP initialization function.

This function should be called at boot up to initilize the uIP TCP/IP stack.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

64 Contiki 1.2-devel0 Module Documentation

5.13 uIP device driver functions

5.13.1 Detailed Description

These functions are used by a network device driver for interacting with uIP.

Defines

• #defineuip_input()

Process an incoming packet.

• #defineuip_periodic(conn)

Periodic processing for a connection identified by its number.

• #defineuip_periodic_conn(conn)

Periodic processing for a connection identified by a pointer to its structure.

• #defineuip_udp_periodic(conn)

Periodic processing for a UDP connection identified by its number.

• #defineuip_udp_periodic_conn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

Variables

• u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

5.13.2 Define Documentation

5.13.2.1 #define uip_input()

Process an incoming packet.

This function should be called when the device driver has received a packet from the network. The packet
from the device driver must be present in the uip_buf buffer, and the length of the packet should be placed
in the uip_len variable.

When the function returns, there may be an outbound packet placed in the uip_buf packet buffer. If so, the
uip_len variable is set to the length of the packet. If no packet is to be sent out, the uip_len variable is set
to 0.

The usual way of calling the function is presented by the source code below.

uip_len = devicedriver_poll();
if(uip_len > 0) {

uip_input();
if(uip_len > 0) {

devicedriver_send();
}

}

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.13 uIP device driver functions 65

Note:
If you are writing a uIP device driver that needs ARP (Address Resolution Protocol), e.g., when run-
ning uIP over Ethernet, you will need to call the uIP ARP code before calling this function:

#define BUF ((struct uip_eth_hdr *)&uip_buf[0])
uip_len = ethernet_devicedrver_poll();
if(uip_len > 0) {

if(BUF->type == HTONS(UIP_ETHTYPE_IP)) {
uip_arp_ipin();
uip_input();
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
} else if(BUF->type == HTONS(UIP_ETHTYPE_ARP)) {

uip_arp_arpin();
if(uip_len > 0) {

ethernet_devicedriver_send();
}

}

5.13.2.2 #define uip_periodic(conn)

Periodic processing for a connection identified by its number.

This function does the necessary periodic processing (timers, polling) for a uIP TCP conneciton, and should
be called when the periodic uIP timer goes off. It should be called for every connection, regardless of
whether they are open of closed.

When the function returns, it may have an outbound packet waiting for service in the uIP packet buffer,
and if so the uip_len variable is set to a value larger than zero. The device driver should be called to send
out the packet.

The ususal way of calling the function is through a for() loop like this:

for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {

devicedriver_send();
}

}

Note:
If you are writing a uIP device driver that needs ARP (Address Resolution Protocol), e.g., when run-
ning uIP over Ethernet, you will need to call theuip_arp_out()function before calling the device
driver:

for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
}

Parameters:
conn The number of the connection which is to be periodically polled.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

66 Contiki 1.2-devel0 Module Documentation

5.13.2.3 #define uip_periodic_conn(conn)

Periodic processing for a connection identified by a pointer to its structure.

Same asuip_periodic()but takes a pointer to the actualuip_connstruct instead of an integer as its argument.
This function can be used to force periodic processing of a specific connection.

Parameters:
conn A pointer to theuip_connstruct for the connection to be processed.

5.13.2.4 #define uip_udp_periodic(conn)

Periodic processing for a UDP connection identified by its number.

This function is essentially the same as uip_prerioic(), but for UDP connections. It is called in a similar
fashion as theuip_periodic()function:

for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {

devicedriver_send();
}

}

Note:
As for theuip_periodic()function, special care has to be taken when using uIP together with ARP and
Ethernet:

for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {

uip_arp_out();
ethernet_devicedriver_send();

}
}

Parameters:
conn The number of the UDP connection to be processed.

5.13.2.5 #define uip_udp_periodic_conn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

Same asuip_udp_periodic()but takes a pointer to the actualuip_connstruct instead of an integer as its
argument. This function can be used to force periodic processing of a specific connection.

Parameters:
conn A pointer to theuip_udp_connstruct for the connection to be processed.

5.13.3 Variable Documentation

5.13.3.1 u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.13 uIP device driver functions 67

The uip_buf array is used to hold incoming and outgoing packets. The device driver should place incoming
data into this buffer. When sending data, the device driver should read the link level headers and the TCP/IP
headers from this buffer. The size of the link level headers is configured by the UIP_LLH_LEN define.

Note:
The application data need not be placed in this buffer, so the device driver must read it from the place
pointed to by the uip_appdata pointer as illustrated by the following example:

void
devicedriver_send(void)
{

hwsend(&uip_buf[0], UIP_LLH_LEN);
hwsend(&uip_buf[UIP_LLH_LEN], 40);
hwsend(uip_appdata, uip_len - 40 - UIP_LLH_LEN);

}

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

68 Contiki 1.2-devel0 Module Documentation

5.14 uIP application functions

5.14.1 Detailed Description

Functions used by an application running of top of uIP.

Defines

• #defineuip_send(data, len)

Send data on the current connection.

• #defineuip_datalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.

• #defineuip_urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

• #defineuip_close()

Close the current connection.

• #defineuip_abort()

Abort the current connection.

• #defineuip_stop()

Tell the sending host to stop sending data.

• #defineuip_stopped(conn)

Find out if the current connection has been previously stopped withuip_stop().

• #defineuip_restart()

Restart the current connection, if is has previously been stopped withuip_stop().

• #defineuip_udpconnection()

Is the current connection a UDP connection?

• #defineuip_newdata()

Is new incoming data available?

• #defineuip_acked()

Has previously sent data been acknowledged?

• #defineuip_connected()

Has the connection just been connected?

• #defineuip_closed()

Has the connection been closed by the other end?

• #defineuip_aborted()

Has the connection been aborted by the other end?

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.14 uIP application functions 69

• #defineuip_timedout()

Has the connection timed out?

• #defineuip_rexmit()

Do we need to retransmit previously data?

• #defineuip_poll()

Is the connection being polled by uIP?

• #defineuip_initialmss()

Get the initial maxium segment size (MSS) of the current connection.

• #defineuip_mss()

Get the current maxium segment size that can be sent on the current connection.

• #defineuip_udp_remove(conn)

Removed a UDP connection.

• #defineuip_udp_bind(conn, port)

Bind a UDP connection to a local port.

• #defineuip_udp_send(len)

Send a UDP datagram of length len on the current connection.

Functions

• void uip_listen(u16_t port)

Start listening to the specified port.

• void uip_unlisten(u16_t port)

Stop listening to the specified port.

• uip_conn∗ uip_connect(u16_t∗ripaddr, u16_t port)

Connect to a remote host using TCP.

• uip_udp_conn∗ uip_udp_new(u16_t∗ripaddr, u16_t rport)

Set up a new UDP connection.

5.14.2 Define Documentation

5.14.2.1 #define uip_abort()

Abort the current connection.

This function will abort (reset) the current connection, and is usually used when an error has occured that
prevents using theuip_close()function.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

70 Contiki 1.2-devel0 Module Documentation

5.14.2.2 #define uip_aborted()

Has the connection been aborted by the other end?

Non-zero if the current connection has been aborted (reset) by the remote host.

5.14.2.3 #define uip_acked()

Has previously sent data been acknowledged?

Will reduce to non-zero if the previously sent data has been acknowledged by the remote host. This means
that the application can send new data.

5.14.2.4 #define uip_close()

Close the current connection.

This function will close the current connection in a nice way.

5.14.2.5 #define uip_closed()

Has the connection been closed by the other end?

Is non-zero if the connection has been closed by the remote host. The application may then do the necessary
clean-ups.

5.14.2.6 #define uip_connected()

Has the connection just been connected?

Reduces to non-zero if the current connection has been connected to a remote host. This will happen both
if the connection has been actively opened (withuip_connect()) or passively opened (withuip_listen()).

5.14.2.7 #define uip_datalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.

The test function uip_data() must first be used to check if there is any data available at all.

5.14.2.8 #define uip_mss()

Get the current maxium segment size that can be sent on the current connection.

The current maxiumum segment size that can be sent on the connection is computed from the receiver’s
window and the MSS of the connection (which also is available by callinguip_initialmss()).

5.14.2.9 #define uip_newdata()

Is new incoming data available?

Will reduce to non-zero if there is new data for the application present at the uip_appdata pointer. The size
of the data is avaliable through the uip_len variable.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.14 uIP application functions 71

5.14.2.10 #define uip_poll()

Is the connection being polled by uIP?

Is non-zero if the reason the application is invoked is that the current connection has been idle for a while
and should be polled.

The polling event can be used for sending data without having to wait for the remote host to send data.

5.14.2.11 #define uip_restart()

Restart the current connection, if is has previously been stopped withuip_stop().

This function will open the receiver’s window again so that we start receiving data for the current connec-
tion.

5.14.2.12 #define uip_rexmit()

Do we need to retransmit previously data?

Reduces to non-zero if the previously sent data has been lost in the network, and the application should
retransmit it. The application should send the exact same data as it did the last time, using theuip_send()
function.

5.14.2.13 #define uip_send(data, len)

Send data on the current connection.

This function is used to send out a single segment of TCP data. Only applications that have been invoked
by uIP for event processing can send data.

The amount of data that actually is sent out after a call to this funcion is determined by the maximum
amount of data TCP allows. uIP will automatically crop the data so that only the appropriate amount of
data is sent. The functionuip_mss()can be used to query uIP for the amount of data that actually will be
sent.

Note:
This function does not guarantee that the sent data will arrive at the destination. If the data is lost in the
network, the application will be invoked with theuip_rexmit()event being set. The application will
then have to resend the data using this function.

Parameters:
data A pointer to the data which is to be sent.

len The maximum amount of data bytes to be sent.

5.14.2.14 #define uip_stop()

Tell the sending host to stop sending data.

This function will close our receiver’s window so that we stop receiving data for the current connection.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

72 Contiki 1.2-devel0 Module Documentation

5.14.2.15 #define uip_timedout()

Has the connection timed out?

Non-zero if the current connection has been aborted due to too many retransmissions.

5.14.2.16 #define uip_udp_bind(conn, port)

Bind a UDP connection to a local port.

Parameters:
conn A pointer to theuip_udp_connstructure for the connection.

port The local port number, in network byte order.

5.14.2.17 #define uip_udp_remove(conn)

Removed a UDP connection.

Parameters:
conn A pointer to theuip_udp_connstructure for the connection.

5.14.2.18 #define uip_udp_send(len)

Send a UDP datagram of length len on the current connection.

This function can only be called in response to a UDP event (poll or newdata). The data must be present in
the uip_buf buffer, at the place pointed to by the uip_appdata pointer.

Parameters:
len The length of the data in the uip_buf buffer.

5.14.2.19 #define uip_udpconnection()

Is the current connection a UDP connection?

This function checks whether the current connection is a UDP connection.

5.14.2.20 #define uip_urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

Note:
The configuration parameter UIP_URGDATA must be set for this function to be enabled.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.14 uIP application functions 73

5.14.3 Function Documentation

5.14.3.1 structuip_conn∗ uip_connect (u16_t∗ ripaddr, u16_tport)

Connect to a remote host using TCP.

This function is used to start a new connection to the specified port on the specied host. It allocates a new
connection identifier, sets the connection to the SYN_SENT state and sets the retransmission timer to 0.
This will cause a TCP SYN segment to be sent out the next time this connection is periodically processed,
which usually is done within 0.5 seconds after the call touip_connect().

Note:
This function is avaliable only if support for active open has been configured by defining UIP_-
ACTIVE_OPEN to 1 in uipopt.h.
Since this function requires the port number to be in network byte order, a convertion usingHTONS()
or htons()is necessary.

u16_t ipaddr[2];

uip_ipaddr(ipaddr, 192,168,1,2);
uip_connect(ipaddr, HTONS(80));

Parameters:
ripaddr A pointer to a 4-byte array representing the IP address of the remote hot.

port A 16-bit port number in network byte order.

Returns:
A pointer to the uIP connection identifier for the new connection, or NULL if no connection could be
allocated.

Here is the call graph for this function:

uip_connect htons

5.14.3.2 void uip_listen (u16_tport)

Start listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_listen(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

74 Contiki 1.2-devel0 Module Documentation

5.14.3.3 structuip_udp_conn∗ uip_udp_new (u16_t∗ ripaddr, u16_t rport)

Set up a new UDP connection.

Parameters:
ripaddr A pointer to a 4-byte structure representing the IP address of the remote host.

rport The remote port number in network byte order.

Returns:
Theuip_udp_connstructure for the new connection or NULL if no connection could be allocated.

5.14.3.4 void uip_unlisten (u16_tport)

Stop listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversion usingHTONS() or
htons()is necessary.

uip_unlisten(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.15 uIP conversion functions 75

5.15 uIP conversion functions

5.15.1 Detailed Description

These functions can be used for converting between different data formats used by uIP.

Defines

• #defineuip_ipaddr(addr, addr0, addr1, addr2, addr3)

Pack an IP address into a 4-byte array which is used by uIP to represent IP addresses.

• #defineuip_ipaddr_copy(dest, src)

Copy an IP address to another IP address.

• #defineuip_ipaddr_cmp(addr1, addr2)

Compare two IP addresses.

• #defineuip_ipaddr_maskcmp(addr1, addr2, mask)

Compare two IP addresses with netmasks.

• #defineuip_ipaddr_mask(dest, src, mask)

Mask out the network part of an IP address.

• #defineuip_ipaddr1(addr)

Pick the first octet of an IP address.

• #defineuip_ipaddr2(addr)

Pick the second octet of an IP address.

• #defineuip_ipaddr3(addr)

Pick the third octet of an IP address.

• #defineuip_ipaddr4(addr)

Pick the fourth octet of an IP address.

• #defineHTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

Functions

• u16_thtons(u16_t val)

Convert 16-bit quantity from host byte order to network byte order.

• unsigned charuiplib_ipaddrconv(char∗addrstr, unsigned char∗addr)

Convert a textual representation of an IP address to a numerical representation.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

76 Contiki 1.2-devel0 Module Documentation

5.15.2 Define Documentation

5.15.2.1 #define HTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

This macro is primarily used for converting constants from host byte order to network byte order. For
converting variables to network byte order, use thehtons()function instead.

5.15.2.2 #define uip_ipaddr(addr, addr0, addr1, addr2, addr3)

Pack an IP address into a 4-byte array which is used by uIP to represent IP addresses.

Example:

u16_t ipaddr[2];

uip_ipaddr(&ipaddr, 192,168,1,2);

Parameters:
addr A pointer to a 4-byte array that will be filled in with the IP addres.

addr0 The first octet of the IP address.

addr1 The second octet of the IP address.

addr2 The third octet of the IP address.

addr3 The forth octet of the IP address.

5.15.2.3 #define uip_ipaddr1(addr)

Pick the first octet of an IP address.

Picks out the first octet of an IP address.

Example:

u16_t ipaddr[2];
u8_t octet;

uip_ipaddr(ipaddr, 1,2,3,4);
octet = uip_ipaddr1(ipaddr);

In the example above, the variable "octet" will contain the value 1.

5.15.2.4 #define uip_ipaddr2(addr)

Pick the second octet of an IP address.

Picks out the second octet of an IP address.

Example:

u16_t ipaddr[2];
u8_t octet;

uip_ipaddr(ipaddr, 1,2,3,4);
octet = uip_ipaddr2(ipaddr);

In the example above, the variable "octet" will contain the value 2.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.15 uIP conversion functions 77

5.15.2.5 #define uip_ipaddr3(addr)

Pick the third octet of an IP address.

Picks out the third octet of an IP address.

Example:

u16_t ipaddr[2];
u8_t octet;

uip_ipaddr(ipaddr, 1,2,3,4);
octet = uip_ipaddr3(ipaddr);

In the example above, the variable "octet" will contain the value 3.

5.15.2.6 #define uip_ipaddr4(addr)

Pick the fourth octet of an IP address.

Picks out the fourth octet of an IP address.

Example:

u16_t ipaddr[2];
u8_t octet;

uip_ipaddr(ipaddr, 1,2,3,4);
octet = uip_ipaddr4(ipaddr);

In the example above, the variable "octet" will contain the value 4.

5.15.2.7 #define uip_ipaddr_cmp(addr1, addr2)

Compare two IP addresses.

Compares two IP addresses.

Example:

u16_t ipaddr1[2], ipaddr2[2];

uip_ipaddr(ipaddr1, 192,16,1,2);
if(uip_ipaddr_cmp(ipaddr2, ipaddr1)) {

printf("They are the same");
}

Parameters:
addr1 The first IP address.

addr2 The second IP address.

5.15.2.8 #define uip_ipaddr_copy(dest, src)

Copy an IP address to another IP address.

Copies an IP address from one place to another.

Example:

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

78 Contiki 1.2-devel0 Module Documentation

u16_t ipaddr1[2], ipaddr2[2];

uip_ipaddr(ipaddr1, 192,16,1,2);
uip_ipaddr_copy(ipaddr2, ipaddr1);

Parameters:
dest The destination for the copy.

src The source from where to copy.

5.15.2.9 #define uip_ipaddr_mask(dest, src, mask)

Mask out the network part of an IP address.

Masks out the network part of an IP address, given the address and the netmask.

Example:

u16_t ipaddr1[2], ipaddr2[2], netmask[2];

uip_ipaddr(ipaddr1, 192,16,1,2);
uip_ipaddr(netmask, 255,255,255,0);
uip_ipaddr_mask(ipaddr2, ipaddr1, netmask);

In the example above, the variable "ipaddr2" will contain the IP address 192.168.1.0.

Parameters:
dest Where the result is to be placed.

src The IP address.

mask The netmask.

5.15.2.10 #define uip_ipaddr_maskcmp(addr1, addr2, mask)

Compare two IP addresses with netmasks.

Compares two IP addresses with netmasks. The masks are used to mask out the bits that are to be compared.

Example:

u16_t ipaddr1[2], ipaddr2[2], mask[2];

uip_ipaddr(mask, 255,255,255,0);
uip_ipaddr(ipaddr1, 192,16,1,2);
uip_ipaddr(ipaddr2, 192,16,1,3);
if(uip_ipaddr_maskcmp(ipaddr1, ipaddr2, mask)) {

printf("They are the same");
}

Parameters:
addr1 The first IP address.

addr2 The second IP address.

mask The netmask.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.15 uIP conversion functions 79

5.15.3 Function Documentation

5.15.3.1 u16_t htons (u16_tval)

Convert 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For
converting constants to network byte order, use theHTONS()macro instead.

5.15.3.2 unsigned char uiplib_ipaddrconv (char∗ addrstr, unsigned char∗ addr)

Convert a textual representation of an IP address to a numerical representation.

This function takes a textual representation of an IP address in the form a.b.c.d and converts it into a 4-byte
array that can be used by other uIP functions.

Parameters:
addrstr A pointer to a string containing the IP address in textual form.

addr A pointer to a 4-byte array that will be filled in with the numerical representation of the address.

Return values:
0 If the IP address could not be parsed.

Non-zero If the IP address was parsed.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

80 Contiki 1.2-devel0 Module Documentation

5.16 uIP Address Resolution Protocol

5.16.1 Detailed Description

The Address Resolution Protocol ARP is used for mapping between IP addresses and link level addresses
such as the Ethernet MAC addresses. ARP uses broadcast queries to ask for the link level address of a
known IP address and the host which is configured with the IP address for which the query was meant, will
respond with its link level address.

Note:
This ARP implementation only supports Ethernet.

Files

• file uip_arp.h

Macros and definitions for the ARP module.

• file uip_arp.c

Implementation of the ARP Address Resolution Protocol.

Data Structures

• structuip_eth_addr

Representation of a 48-bit Ethernet address.

• structuip_eth_hdr

The Ethernet header.

Functions

• void uip_arp_init(void)

Initialize the ARP module.

• void uip_arp_arpin(void)

ARP processing for incoming ARP packets.

• void uip_arp_out(void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

• void uip_arp_timer(void)

Periodic ARP processing function.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.16 uIP Address Resolution Protocol 81

5.16.2 Function Documentation

5.16.2.1 void uip_arp_arpin (void)

ARP processing for incoming ARP packets.

This function should be called by the device driver when an ARP packet has been received. The function
will act differently depending on the ARP packet type: if it is a reply for a request that we previously sent
out, the ARP cache will be filled in with the values from the ARP reply. If the incoming ARP packet is an
ARP request for our IP address, an ARP reply packet is created and put into the uip_buf[] buffer.

When the function returns, the value of the global variable uip_len indicates whether the device driver
should send out a packet or not. If uip_len is zero, no packet should be sent. If uip_len is non-zero, it
contains the length of the outbound packet that is present in the uip_buf[] buffer.

This function expects an ARP packet with a prepended Ethernet header in the uip_buf[] buffer, and the
length of the packet in the global variable uip_len.

5.16.2.2 void uip_arp_out (void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

This function should be called before sending out an IP packet. The function checks the destination IP
address of the IP packet to see what Ethernet MAC address that should be used as a destination MAC
address on the Ethernet.

If the destination IP address is in the local network (determined by logical ANDing of netmask and our IP
address), the function checks the ARP cache to see if an entry for the destination IP address is found. If so,
an Ethernet header is prepended and the function returns. If no ARP cache entry is found for the destination
IP address, the packet in the uip_buf[] is replaced by an ARP request packet for the IP address. The IP
packet is dropped and it is assumed that they higher level protocols (e.g., TCP) eventually will retransmit
the dropped packet.

If the destination IP address is not on the local network, the IP address of the default router is used instead.

When the function returns, a packet is present in the uip_buf[] buffer, and the length of the packet is in the
global variable uip_len.

5.16.2.3 void uip_arp_timer (void)

Periodic ARP processing function.

This function performs periodic timer processing in the ARP module and should be called at regular inter-
vals. The recommended interval is 10 seconds between the calls.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

82 Contiki 1.2-devel0 Module Documentation

5.17 uIP TCP throughput booster hack

5.17.1 Detailed Description

The basic uIP TCP implementation only allows each TCP connection to have a single TCP segment in
flight at any given time. Because of the delayed ACK algorithm employed by most TCP receivers, uIP’s
limit on the amount of in-flight TCP segments seriously reduces the maximum achievable throughput for
sending data from uIP.

The uip-split module is a hack which tries to remedy this situation. By splitting maximum sized outgoing
TCP segments into two, the delayed ACK algorithm is not invoked at TCP receivers. This improves the
throughput when sending data from uIP by orders of magnitude.

The uip-split module uses the uip-fw module (uIP IP packet forwarding) for sending packets. Therefore,
the uip-fw module must be set up with the appropriate network interfaces for this module to work.

Files

• file uip-split.h

Module for splitting outbound TCP segments in two to avoid the delayed ACK throughput degradation.

Functions

• void uip_split_output(void)

Handle outgoing packets.

5.17.2 Function Documentation

5.17.2.1 void uip_split_output (void)

Handle outgoing packets.

This function inspects an outgoing packet in the uip_buf buffer and sends it out using the uip_fw_output()
function. If the packet is a full-sized TCP segment it will be split into two segments and transmitted
separately. This function should be called instead of the actual device driver output function, or the uip_-
fw_output() function.

The headers of the outgoing packet is assumed to be in the uip_buf buffer and the payload is assumed to be
wherever uip_appdata points. The length of the outgoing packet is assumed to be in the uip_len variable.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.18 uIP hostname resolver functions 83

5.18 uIP hostname resolver functions

5.18.1 Detailed Description

The uIP DNS resolver functions are used to lookup a hostname and map it to a numerical IP address.
It maintains a list of resolved hostnames that can be queried with theresolv_lookup()function. New
hostnames can be resolved using theresolv_query()function.

The signal resolv_signal_found is emitted when a hostname has been resolved. The signal is emitted to all
processes listening for the signal, and it is up to the receiving process to determine if the correct hostname
has been found by calling theresolv_lookup()function with the hostname.

Files

• file resolv.c

DNS host name to IP address resolver.

Functions

• void resolv_query(char∗name)

Queues a name so that a question for the name will be sent out.

• u16_t∗ resolv_lookup(char∗name)

Look up a hostname in the array of known hostnames.

• u16_t∗ resolv_getserver(void)

Obtain the currently configured DNS server.

• void resolv_conf(u16_t∗dnsserver)

Configure a DNS server.

• void resolv_init(char∗arg)

Initalize the resolver.

Variables

• ek_event_tresolv_event_found

Signal that is sent when a DNS name has been resolved.

5.18.2 Function Documentation

5.18.2.1 void resolv_conf (u16_t∗ dnsserver)

Configure a DNS server.

Parameters:
dnsserverA pointer to a 4-byte representation of the IP address of the DNS server to be configured.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

84 Contiki 1.2-devel0 Module Documentation

Here is the call graph for this function:

resolv_conf ek_post

5.18.2.2 u16_t∗ resolv_getserver (void)

Obtain the currently configured DNS server.

Returns:
A pointer to a 4-byte representation of the IP address of the currently configured DNS server or NULL
if no DNS server has been configured.

5.18.2.3 u16_t∗ resolv_lookup (char∗ name)

Look up a hostname in the array of known hostnames.

Note:
This function only looks in the internal array of known hostnames, it does not send out a query for the
hostname if none was found. The functionresolv_query()can be used to send a query for a hostname.

Returns:
A pointer to a 4-byte representation of the hostname’s IP address, or NULL if the hostname was not
found in the array of hostnames.

5.18.2.4 void resolv_query (char∗ name)

Queues a name so that a question for the name will be sent out.

Parameters:
name The hostname that is to be queried.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.19 Socket library 85

5.19 Socket library

5.19.1 Detailed Description

The socket library provides an interface to the uIP stack that is similar to the traditional BSD socket inter-
face. Unlike programs written for the ordinary uIP event-driven interface, programs written with the socket
library are executed in a sequential fashion and does not have to be implemented as explicit state machines.

Sockets only work with TCP connections.

The socket library uses protothreads to provide sequential control flow. This makes the sockets lightweight
in terms of memory, but also means that sockets inherits the functional limitations of protothreads. Each
socket lives only within a single function block. Automatic variables (stack variables) are not necessarily
retained across a socket library function call.

The socket library provides functions for sending data without having to deal with retransmissions and
acknowledgements, as well as functions for reading data without having to deal with data being split across
more than one TCP segment.

Because each socket runs as a protothread, the socket has to be started with a call toSOCKET_BEGIN()
at the start of the function in which the socket is used. Similarly, the socket protothread can be terminated
by a call toSOCKET_EXIT().

The example code below illustrates how to use the socket library. The program implements a simple
SMTP client that sends a short email. The program is divided into two functions, one uIP event handler
(smtp_uipcall()) and one function that runs the socket protothread and performs the SMTP communication
(smtp_socketthread()).

An SMTP connection is represented by a smtp_state structure containing a struct socket and a small input
buffer. The input buffer only needs to be 3 bytes long to accomodate the 3 byte status codes used by SMTP.
Connection structures can be allocated from the memory buffer called connections, which is declared with
theMEMB() macro.

The convenience macro SEND_STRING() is defined in order to simplify the code, as it mostly involves
sending strings.

The function smtp_socketthread() is declared as a protothread using thePT_THREAD() macro. The
SOCKET_BEGIN()call at the first line of the smtp_socketthread() function starts the protothread. SMTP
specifies that the server will start with sending a welcome message that should include the status code
220 if the server is ready to accept messages. Therefore, the smtp_socketthread() first callsSOCKET_-
READTO() to read all incoming data up to the first newline. If the status code was anything else but 220,
the socket is closed and the socket’s protothread is terminated with the call toSOCKET_CLOSE_EXIT().

If the connection is accepted by the server, smtp_socketthread() continues with sending the HELO message.
If this gets a positive reply (a status code beginning with a 2), the protothread moves on with the rest of
the SMTP procedure. Finally, after all headers and data is sent, the program sends a QUIT before it finally
closes the socket and exits the socket’s protothread.

#include <string.h>

#include "socket.h"
#include "memb.h"

struct smtp_state {
struct socket socket;
char inputbuffer[3];

};

MEMB(connections, sizeof(struct smtp_state), 2);

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

86 Contiki 1.2-devel0 Module Documentation

#define SEND_STRING(s, str) SOCKET_SEND(s, str, strlen(str))

static
PT_THREAD(smtp_socketthread(struct smtp_state *s))
{

SOCKET_BEGIN(&s->socket);

SOCKET_READTO(&s->socket, ’\n’);

if(strncmp(s->inputbuffer, "220", 3) != 0) {
SOCKET_CLOSE_EXIT(&s->socket);

}

SEND_STRING(&s->socket, "HELO contiki.example.com\r\n");

SOCKET_READTO(&s->socket, ’\n’);
if(s->inputbuffer[0] != ’2’) {

SOCKET_CLOSE_EXIT(&s->socket);
}

SEND_STRING(&s->socket, "MAIL FROM: contiki@example.com\r\n");

SOCKET_READTO(&s->socket, ’\n’);
if(s->inputbuffer[0] != ’2’) {

SOCKET_CLOSE_EXIT(&s->socket);
}

SEND_STRING(&s->socket, "RCPT TO: contiki@example.com\r\n");

SOCKET_READTO(&s->socket, ’\n’);
if(s->inputbuffer[0] != ’2’) {

SOCKET_CLOSE_EXIT(&s->socket);
}

SEND_STRING(&s->socket, "DATA\r\n");

SOCKET_READTO(&s->socket, ’\n’);
if(s->inputbuffer[0] != ’3’) {

SOCKET_CLOSE_EXIT(&s->socket);
}

SEND_STRING(&s->socket, "To: contiki@example.com\r\n");
SEND_STRING(&s->socket, "From: contiki@example.com\r\n");
SEND_STRING(&s->socket, "Subject: Example\r\n");

SEND_STRING(&s->socket, "A test message from Contiki.\r\n");

SEND_STRING(&s->socket, "\r\n.\r\n");

SOCKET_READTO(&s->socket, ’\n’);
if(s->inputbuffer[0] != ’2’) {

SOCKET_CLOSE_EXIT(&s->socket);
}

SEND_STRING(&s->socket, "QUIT\r\n");

SOCKET_END(&s->socket);
}

void
smtp_uipcall(void *state)
{

struct smtp_state *s = (struct smtp_state *)state;

if(uip_closed() || uip_aborted() || uip_timedout()) {
memb_free(&connections, s);

} else if(uip_connected()) {

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.19 Socket library 87

SOCKET_INIT(s, s->inputbuffer, sizeof(s->inputbuffer));
} else {

smtp_socketthread(s);
}

}

Files

• file socket.h

Socket library header file.

Data Structures

• structsocket

The representation of a socket.

Defines

• #defineSOCKET_INIT(socket, buffer, buffersize)

Initialize a socket.

• #defineSOCKET_BEGIN(socket)

Start the socket protothread in a function.

• #defineSOCKET_SEND(socket, data, datalen)

Send data.

• #defineSOCKET_CLOSE(socket)

Close a socket.

• #defineSOCKET_READTO(socket, c)

Read data up to a specified character.

• #defineSOCKET_DATALEN(socket)

The length of the data that was previously read.

• #defineSOCKET_EXIT(socket)

Exit the socket’s protothread.

• #defineSOCKET_CLOSE_EXIT(socket)

Close a socket and exit the socket’s protothread.

• #defineSOCKET_NEWDATA(socket)

Check if new data has arrived on a socket.

• #defineSOCKET_WAIT_UNTIL(socket, condition)

Wait until data arrives or until a condition is true.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

88 Contiki 1.2-devel0 Module Documentation

5.19.2 Define Documentation

5.19.2.1 #define SOCKET_BEGIN(socket)

Start the socket protothread in a function.

This macro starts the protothread associated with the socket and must come before other socket calls in the
function it is used.

Parameters:
socket (struct socket∗) A pointer to the socket to be started.

5.19.2.2 #define SOCKET_CLOSE(socket)

Close a socket.

This macro closes a socket and can only be called from within the protothread in which the socket lives.

Parameters:
socket (struct socket∗) A pointer to the socket that is to be closed.

5.19.2.3 #define SOCKET_CLOSE_EXIT(socket)

Close a socket and exit the socket’s protothread.

This macro closes a socket and exits the socket’s protothread.

Parameters:
socket (struct socket∗) A pointer to the socket.

5.19.2.4 #define SOCKET_DATALEN(socket)

The length of the data that was previously read.

This macro returns the length of the data that was previously read usingSOCKET_READTO()or
SOCKET_READ().

Parameters:
socket (struct socket∗) A pointer to the socket holding the data.

5.19.2.5 #define SOCKET_EXIT(socket)

Exit the socket’s protothread.

This macro terminates the protothread of the socket and should almost always be used in conjunction with
SOCKET_CLOSE().

See also:
SOCKET_CLOSE_EXIT()

Parameters:
socket (struct socket∗) A pointer to the socket.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.19 Socket library 89

5.19.2.6 #define SOCKET_INIT(socket, buffer, buffersize)

Initialize a socket.

This macro initializes a socket and must be called before the socket is used. The initialization also specifies
the input buffer for the socket.

Parameters:
socket (struct socket∗) A pointer to the socket to be initialized

buffer (char∗) A pointer to the input buffer for the socket.

buffersize (unsigned int) The size of the input buffer.

5.19.2.7 #define SOCKET_NEWDATA(socket)

Check if new data has arrived on a socket.

This macro is used in conjunction with theSOCKET_WAIT_UNTIL() macro to check if data has arrived
on a socket.

Parameters:
socket (struct socket∗) A pointer to the socket.

5.19.2.8 #define SOCKET_READTO(socket, c)

Read data up to a specified character.

This macro will block waiting for data and read the data into the input buffer specified with the call to
SOCKET_INIT(). Data is only read until the specifieed character appears in the data stream.

Parameters:
socket (struct socket∗) A pointer to the socket from which data should be read.

c (char) The character at which to stop reading.

5.19.2.9 #define SOCKET_SEND(socket, data, datalen)

Send data.

This macro sends data over a socket. The socket protothread blocks until all data has been sent and is
known to have been received by the remote end of the TCP connection.

Parameters:
socket (struct socket∗) A pointer to the socket over which data is to be sent.

data (char∗) A pointer to the data that is to be sent.

datalen (unsigned int) The length of the data that is to be sent.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

90 Contiki 1.2-devel0 Module Documentation

5.19.2.10 #define SOCKET_WAIT_UNTIL(socket, condition)

Wait until data arrives or until a condition is true.

This macro blocks the protothread until new data arrives on the socket or until the specified condition is
true. After the protothread unblocks, the macroSOCKET_NEWDATA()must be used to check whether
the protothread unblocked because of new data arrived or (only) if the condition was true.

Typically, this macro is used as follows:

PT_THREAD(thread(struct socket *s, struct timer *t))
{

SOCKET_BEGIN(s);

SOCKET_WAIT_UNTIL(s, timer_expired(t) || something_else());

if(SOCKET_NEWDATA(s)) {
SOCKET_READTO(s, ’\n’);

} else {
handle_timed_out(s);

}

SOCKET_END(s);
}

Parameters:
socket (struct socket∗) A pointer to the socket.

condition The condition to wait for.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.20 Memory block management functions 91

5.20 Memory block management functions

5.20.1 Detailed Description

The memory block allocation routines provide a simple yet powerful set of functions for managing a set of
memory blocks of fixed size.

A set of memory blocks is statically declared with theMEMB() macro. Memory blocks are allocated from
the declared memory by thememb_alloc()function, and are deallocated with thememb_free()function.

Note:
Because of namespace clashes only oneMEMB() can be declared per C module, and the name scope
of aMEMB() memory block is local to each C module.

The following example shows how to declare and use a memory block called "cmem" which has 8 chunks
of memory with each memory chunk being 20 bytes large.

#include "memb.h"

MEMB(cmem, 20, 8);

int main(int argc, char *argv[]) {
char *ptr;

memb_init(&cmem);

ptr = memb_alloc(&cmem);

if(ptr != NULL) {
do_something(ptr);

} else {
printf("Could not allocate memory.\n");

}

if(memb_free(&cmem, ptr) == 0) {
printf("Deallocation succeeded.\n");

}
}

Files

• file memb.h

Memory block allocation routines.

• file memb.c

Memory block allocation routines.

Defines

• #defineMEMB(name, size, num)

Declare a memory block.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

92 Contiki 1.2-devel0 Module Documentation

Functions

• void memb_init(struct memb_blocks∗m)

Initialize a memory block that was declared withMEMB().

• char∗ memb_alloc(struct memb_blocks∗m)

Allocate a memory block from a block of memory declared withMEMB().

• charmemb_ref(struct memb_blocks∗m, char∗ptr)

Increase the reference count for a memory chunk.

• charmemb_free(struct memb_blocks∗m, void∗ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

5.20.2 Define Documentation

5.20.2.1 #define MEMB(name, size, num)

Value:

static char name_memb_mem[(size + 1) * num]; \
static struct memb_blocks name = {size, num, name_memb_mem}

Declare a memory block.

This macro is used to staticall declare a block of memory that can be used by the block allocation functions.
The macro statically declares a C array with a size that matches the specified number of blocks and their
individual sizes.

Example:

MEMB(connections, sizeof(struct connection), 16);

Parameters:
name The name of the memory block (later used withmemb_init(), memb_alloc()andmemb_free()).

size The size of each memory chunk, in bytes.

num The total number of memory chunks in the block.

5.20.3 Function Documentation

5.20.3.1 char∗ memb_alloc (struct memb_blocks∗ m)

Allocate a memory block from a block of memory declared withMEMB().

Parameters:
m A memory block previosly declared withMEMB().

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.20 Memory block management functions 93

5.20.3.2 char memb_free (struct memb_blocks∗ m, void ∗ ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

Parameters:
m m A memory block previosly declared withMEMB().

ptr A pointer to the memory block that is to be deallocated.

Returns:
The new reference count for the memory block (should be 0 if successfully deallocated) or -1 if the
pointer "ptr" did not point to a legal memory block.

5.20.3.3 void memb_init (struct memb_blocks∗ m)

Initialize a memory block that was declared withMEMB().

Parameters:
m A memory block previosly declared withMEMB().

5.20.3.4 char memb_ref (struct memb_blocks∗ m, char ∗ ptr)

Increase the reference count for a memory chunk.

Note:
No sanity checks are currently made.

Parameters:
m m A memory block previosly declared withMEMB().

ptr A pointer to the memory chunk for which the reference count should be increased.

Returns:
The new reference count.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

94 Contiki 1.2-devel0 Module Documentation

5.21 Peemptive multi-threading

5.21.1 Detailed Description

The event driven Contiki kernel does not provide multi-threading by itself - instead, preemptive multi-
threading is implemented as a library that optionally can be linked with applications. This library constists
of two parts: a platform independent part, which is the same for all platforms on which Contiki runs, and
a platform specific part, which must be implemented specifically for the platform that the multi-threading
library should run.

Modules

• groupArchitecture support for multi-threading
• groupMulti-threading library convenience functions

Defines

• #defineMT_OK

No error.

Functions

• void mt_init (void)

Initializes the multithreading library.

• void mt_remove(void)

Uninstalls library and cleans up.

• void mt_start(struct mt_thread∗thread, void(∗function)(void∗), void ∗data)

Starts a multithreading thread.

• void mt_exec(struct mt_thread∗thread)

Start executing a thread.

• void mt_exec_event(struct mt_thread∗thread, ek_event_t s, ek_data_t data)

Post an event to a thread.

• void mt_yield(void)

Voluntarily give up the processor.

• void mt_post(ek_id_t id, ek_event_t s, ek_data_t data)

Emit a signal to another process.

• void mt_wait(ek_event_t∗s, ek_data_t∗data)

Block and wait for an event to occur.

• void mt_exit(void)

Exit a thread.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.21 Peemptive multi-threading 95

5.21.2 Function Documentation

5.21.2.1 void mt_exec (struct mt_thread∗ thread)

Start executing a thread.

This function is called by a Contiki process and starts running a thread. The function does not return until
the thread has yielded, or is preempted.

Note:
The thread must first be initialized with themt_init() function.

Parameters:
thread A pointer to a struct mt_thread block that must be allocated by the caller.

Here is the call graph for this function:

mt_exec mtarch_exec

5.21.2.2 void mt_exec_event (struct mt_thread∗ thread, ek_event_ts, ek_data_tdata)

Post an event to a thread.

This function posts an event to a thread. The thread will be scheduled if the thread currently is waiting for
the posted event number. If the thread is not waiting for the event, this function does nothing.

Note:
The thread must first be initialized with themt_init() function.

Parameters:
thread A pointer to a struct mt_thread block that must be allocated by the caller.

s The event that is posted to the thread.

Here is the call graph for this function:

mt_exec_event mtarch_exec

5.21.2.3 void mt_exit (void)

Exit a thread.

This function is called from within an executing thread in order to exit the thread. The function never
returns.

Here is the call graph for this function:

mt_exit mtarch_yield

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

96 Contiki 1.2-devel0 Module Documentation

5.21.2.4 void mt_post (ek_id_tid, ek_event_ts, ek_data_tdata)

Emit a signal to another process.

This function is called by a running thread and will emit a signal to another Contiki process. This will
cause the currently executing thread to yield.

Parameters:
s The signal to be emitted.

data A pointer to a message that is to be delivered together with the signal.

id The process ID of the receiver of the signal, or EK_ID_ALL for a broadcast signal.

Here is the call graph for this function:

mt_post ek_post

5.21.2.5 void mt_start (struct mt_thread∗ thread, void(∗ function)(void ∗), void ∗ data)

Starts a multithreading thread.

Parameters:
thread Pointer to an mt_thread struct that must have been previously allocated by the caller.

function A pointer to the entry function of the thread that is to be set up.

data A pointer that will be passed to the entry function.

Here is the call graph for this function:

mt_start mtarch_start

5.21.2.6 void mt_wait (ek_event_t∗ s, ek_data_t∗ data)

Block and wait for an event to occur.

This function can be called by a running thread in order to block and wait for an event. The function returns
when an event has occured. The event number and the associated data are placed in the variables pointed
to by the function arguments.

Here is the call graph for this function:

mt_wait mtarch_yield

5.21.2.7 void mt_yield (void)

Voluntarily give up the processor.

This function is called by a running thread in order to give up control of the CPU.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.21 Peemptive multi-threading 97

Here is the call graph for this function:

mt_yield mtarch_yield

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

98 Contiki 1.2-devel0 Module Documentation

5.22 Architecture support for multi-threading

5.22.1 Detailed Description

The Contiki multi-threading library requires some architecture specific support for seting up and switch-
ing stacks. This support requires three stack manipulation functions to be implemented:mtarch_start(),
which sets up the stack frame for a new thread,mtarch_exec(), which switches in the stack of a thread,
and mtarch_yield(), which restores the kernel stack from a thread’s stack. Additionally, two functions
for controlling the preemption (if any) must be implemented: mtarch_preemption_start() and mtarch_-
preemption_stop(). If no preemption is used, these functions can be implemented as empty functions.
Finally, the functionmtarch_init()is called bymt_init(), and can be used for initalization of timer inter-
rupts, or any other mechanisms required for correct operation of the architecture specific support funcions.

Files

• file mt.h

Header file for the preemptive multitasking library for Contiki.

Functions

• void mtarch_init(void)

Initialize the architecture specific support functions for the multi-thread library.

• void mtarch_remove(void)

Uninstall library and clean up.

• void mtarch_start(struct mtarch_thread∗thread, void(∗function)(void∗data), void∗data)

Setup the stack frame for a thread that is being started.

• void mtarch_yield(void)

Yield the processor.

• void mtarch_exec(struct mtarch_thread∗thread)

Start executing a thread.

5.22.2 Function Documentation

5.22.2.1 void mtarch_exec (struct mtarch_thread∗ thread)

Start executing a thread.

This function is called frommt_exec()and the purpose of the function is to start execution of the thread.
The function should switch in the stack of the thread, and does not return until the thread has explicitly
yielded (usingmt_yield()) or until it is preempted.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.22 Architecture support for multi-threading 99

5.22.2.2 void mtarch_init (void)

Initialize the architecture specific support functions for the multi-thread library.

This function is implemented by the architecture specific functions for the multi-thread library and is called
by themt_init() function as part of the initialization of the library. Themtarch_init()function can be used
for, e.g., starting preemtion timers or other architecture specific mechanisms required for the operation of
the library.

5.22.2.3 void mtarch_start (struct mtarch_thread∗ thread, void(∗ function)(void ∗data), void ∗
data)

Setup the stack frame for a thread that is being started.

This function is called by themt_start()function in order to set up the architecture specific stack of the
thread to be started.

Parameters:
thread A pointer to a struct mtarch_thread for the thread to be started.

function A pointer to the function that the thread will start executing the first time it is scheduled to
run.

data A pointer to the argument that the function should be passed.

5.22.2.4 void mtarch_yield (void)

Yield the processor.

This function is called by themt_yield()function, which is called from the running thread in order to give
up the processor.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

100 Contiki 1.2-devel0 Module Documentation

5.23 Multi-threading library convenience functions

5.23.1 Detailed Description

The Contiki multi-threading library has an interface that might be hard to use. Therefore, the mtp module
provides a simpler interface.

Example:

static void
example_thread_code(void *data)
{

while(1) {
printf("Test\n");
mt_yield();

}
}
MTP(example_thread, "Example thread", p1, t1, t1_idle);

int
main(int argc, char *argv[])
{

mtp_start(&example_thread, example_thread_code, NULL);
}

Defines

• #defineMTP(thread, proc, name)

Declare a thread.

Functions

• void mtp_start(struct mtp_thread∗t, void(∗function)(void∗), void ∗data)

Start a thread.

5.23.2 Define Documentation

5.23.2.1 #define MTP(thread, proc, name)

Declare a thread.

This macro is used to covneniently declare a thread, and the process in which the thread should execute.
The names of the variables provided to the macro should be chosen to be unique within the file that the
thread is used.

Example:

MTP(example_thread, "Example thread", p1, t1, t1_idle);

Parameters:
thread The name of the thread.

name A string that specifies the user-visible name of the process in which the thread will run.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.23 Multi-threading library convenience functions 101

name_p The name of the variable holding the process’ state.

name_t The name of the variable holding the threads’ state.

name_idle The name of the function that is to execute the threads’ code.

5.23.3 Function Documentation

5.23.3.1 void mtp_start (struct mtp_thread∗ t, void(∗ function)(void ∗), void ∗ data)

Start a thread.

This function starts the process in which the thread is to run, and also sets up the thread to run within the
process. The function should be passed variable names declared with theMTP() macro.

Example:

mtp_start(&t, example_thread_code, NULL);

Parameters:
t A pointer to a thread structure previously declared withMTP().

function A pointer to the function that the thread should start executing.

data A pointer that the function should be passed when first invocated.

Here is the call graph for this function:

mtp_start

ek_start

mt_start

ek_post

mtarch_start

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

102 Contiki 1.2-devel0 Module Documentation

5.24 System signals

Variables

• ek_event_tctk_signal_keypress

Emitted for every key being pressed.

• ek_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

• ek_event_tctk_signal_button_activate

Same as ctk_signal_widget_activate.

• ek_event_tctk_signal_widget_select

Emitted when a widget is selected.

• ek_event_tctk_signal_button_hover

Same as ctk_signal_widget_select.

• ek_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

• ek_event_tctk_signal_hyperlink_hover

Same as ctk_signal_widget_select.

• ek_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

• ek_event_tctk_signal_window_close

Emitted when a window is closed.

• ek_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

• ek_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

• ek_event_tresolv_event_found

Signal that is sent when a DNS name has been resolved.

5.24.1 Variable Documentation

5.24.1.1 ek_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

The signal is broadcast to all listeners.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

5.24 System signals 103

5.24.1.2 ek_event_tctk_signal_keypress

Emitted for every key being pressed.

The key is passed as signal data.

5.24.1.3 ek_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

The number of the menu item is passed as signal data.

5.24.1.4 ek_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

The button is passed as signal data to the listening process.

5.24.1.5 ek_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

A NULL pointer is passed as signal data and it is up to the listening process to check the position of the
mouse using the CTK mouse API.

5.24.1.6 ek_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

A pointer to the widget is passed as signal data.

5.24.1.7 ek_event_tctk_signal_widget_select

Emitted when a widget is selected.

A pointer to the widget is passed as signal data.

5.24.1.8 ek_event_tctk_signal_window_close

Emitted when a window is closed.

A pointer to the window is passed as signal data.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

104 Contiki 1.2-devel0 Module Documentation

5.25 Uiparch

Variables

• u8_tuip_acc32[4]

4-byte array used for the 32-bit sequence number calculations.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

Chapter 6

Contiki 1.2-devel0 Data Structure
Documentation

6.1 ctk_menu Struct Reference

#include <ctk.h >

Collaboration diagram for ctk_menu:

ctk_menu next

ctk_menuitem

items

6.1.1 Detailed Description

Representation of an individual menu.

Data Fields

• ctk_menu∗ next

Apointer to the next menu, or is NULL if this is the last menu, and should be used by the ctk-draw module
when stepping through the menus when drawing them on screen.

• char∗ title

The menu title.

• unsigned chartitlelen

The length of the title in characters.

• unsigned charnitems

The total number of menu items in the menu.

106 Contiki 1.2-devel0 Data Structure Documentation

• unsigned charactive

The currently active menu item.

• ctk_menuitemitems[CTK_CONF_MAXMENUITEMS]

The array which contains all the menu items.

6.1.2 Field Documentation

6.1.2.1 unsigned charctk_menu::titlelen

The length of the title in characters.

Cached for speed reasons.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

6.2 ctk_menuitem Struct Reference 107

6.2 ctk_menuitem Struct Reference

#include <ctk.h >

6.2.1 Detailed Description

Representation of an individual menu item.

Data Fields

• char∗ title

The menu items text.

• unsigned chartitlelen

The length of the item text, cached for speed.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

108 Contiki 1.2-devel0 Data Structure Documentation

6.3 ctk_menus Struct Reference

#include <ctk.h >

Collaboration diagram for ctk_menus:

ctk_menus

ctk_menu

desktopmenu
open

menus

next

ctk_menuitem

items

6.3.1 Detailed Description

Representation of the menu bar.

Data Fields

• ctk_menu∗ menus

A pointer to a linked list of all menus, including the open menu and the desktop menu.

• ctk_menu∗ open

The currently open menu, if any.

• ctk_menu∗ desktopmenu

A pointer to the "Desktop" menu that can be used for drawing the desktop menu in a special way (such as
drawing it at the rightmost position).

6.3.2 Field Documentation

6.3.2.1 structctk_menu∗ ctk_menus::open

The currently open menu, if any.

If all menus are closed, this item is NULL:

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

6.4 ctk_widget Struct Reference 109

6.4 ctk_widget Struct Reference

#include <ctk.h >

Collaboration diagram for ctk_widget:

ctk_widget next

ctk_window

focused
active

inactive
window

prev
next

6.4.1 Detailed Description

The generic CTK widget structure that contains all other widget structures.

Since the widgets of a window are arranged on a linked list, the widget structure contains a next pointer
which is used for this purpose. The widget structure also contains the placement and the size of the widget.

Finally, the actual per-widget structure is contained in this top-level widget structure.

Data Fields

• ctk_widget∗ next

The next widget in the linked list of widgets that is contained in thectk_windowstructure.

• ctk_window∗ window

The window in which the widget is contained.

• unsigned charx

The x position of the widget within the containing window, in character coordinates.

• unsigned chary

The y position of the widget within the containing window, in character coordinates.

• unsigned chartype

The type of the widget: CTK_WIDGET_SEPARATOR, CTK_WIDGET_LABEL, CTK_WIDGET_-
BUTTON, CTK_WIDGET_HYPERLINK, CTK_WIDGET_TEXTENTRY, CTK_WIDGET_BITMAP or
CTK_WIDGET_ICON.

• unsigned charw

The width of the widget in character coordinates.

• unsigned charh

The height of the widget in character coordinates.

• union {
} widget

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

110 Contiki 1.2-devel0 Data Structure Documentation

The union which contains the actual widget structure, as determined by the type field.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

6.5 ctk_window Struct Reference 111

6.5 ctk_window Struct Reference

#include <ctk.h >

Collaboration diagram for ctk_window:

ctk_window prev
next

ctk_widget

window
focused
active

inactive

next

6.5.1 Detailed Description

Representation of a CTK window.

For the CTK, each window is repessented by a ctk_window structure. All open windows are kept on a
doubly linked list, linked by the next and prev fields in the ctk_window struct. The window structure holds
all widgets that is contained in the window as well as a pointer to the currently selected widget.

Data Fields

• ctk_window∗ next

The next window in the doubly linked list of open windows.

• ctk_window∗ prev

The previous window in the doubly linked list of open windows.

• ctk_desktop∗ desktop

The desktop on which this window is open.

• ek_id_towner

The process that owns the window.

• char∗ title

The title of the window.

• unsigned chartitlelen

The length of the title, cached for speed reasons.

• unsigned charx

The x coordinate of the window, in characters.

• unsigned chary

The y coordinate of the window, in characters.

• unsigned charw

The width of the window, excluding window borders.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

112 Contiki 1.2-devel0 Data Structure Documentation

• unsigned charh

The height of the window, excluding window borders.

• ctk_widget∗ inactive

The list if widgets that cannot be selected by the user.

• ctk_widget∗ active

The list of widgets that can be selected by the user.

• ctk_widget∗ focused

A pointer to the widget on the active list that is currently selected, or NULL if no widget is selected.

6.5.2 Field Documentation

6.5.2.1 structctk_widget∗ ctk_window::active

The list of widgets that can be selected by the user.

Buttons, hyperlinks, text entry fields, etc., are placed on this list.

6.5.2.2 structctk_widget∗ ctk_window::inactive

The list if widgets that cannot be selected by the user.

Labels and separator widgets are placed on this list.

6.5.2.3 ek_id_tctk_window::owner

The process that owns the window.

This process will be the receiver of all CTK signals that pertain to this window.

6.5.2.4 char∗ ctk_window::title

The title of the window.

Used for constructing the "Dekstop" menu.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

6.6 dsc Struct Reference 113

6.6 dsc Struct Reference

#include <dsc.h >

6.6.1 Detailed Description

The DSC program description structure.

The DSC structure is used for describing a Contiki program. It includes a short textual description of the
program, either the name of the program on disk, or a pointer to the init() function, and an icon for the
program.

Data Fields

• char∗ description

A text string containing a one-line description of the program.

• char∗ prgname

The name of the program on disk.

• ctk_icon∗ icon

A pointer to the ctk_icon structure for the DSC.

• void ∗ loadaddr

The loading address of the DSC.

6.6.2 Field Documentation

6.6.2.1 void∗ dsc::loadaddr

The loading address of the DSC.

Used by theLOADER_UNLOAD() function when deallocating the memory allocated for the DSC when
loading it.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

114 Contiki 1.2-devel0 Data Structure Documentation

6.7 socket Struct Reference

#include <socket.h >

6.7.1 Detailed Description

The representation of a socket.

The socket structrure is an opaque structure with no user-visible elements.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

6.8 uip_conn Struct Reference 115

6.8 uip_conn Struct Reference

#include <uip.h >

6.8.1 Detailed Description

Representation of a uIP TCP connection.

The uip_conn structure is used for identifying a connection. All but one field in the structure are to be
considered read-only by an application. The only exception is the appstate field whos purpose is to let the
application store application-specific state (e.g., file pointers) for the connection. The size of this field is
configured in the "uipopt.h" header file.

Data Fields

• u16_tripaddr[2]

The IP address of the remote host.

• u16_tlport

The local TCP port, in network byte order.

• u16_trport

The local remote TCP port, in network byte order.

• u8_trcv_nxt[4]

The sequence number that we expect to receive next.

• u8_tsnd_nxt[4]

The sequence number that was last sent by us.

• u16_tlen

Length of the data that was previously sent.

• u16_tmss

Current maximum segment size for the connection.

• u16_tinitialmss

Initial maximum segment size for the connection.

• u8_tsa

Retransmission time-out calculation state variable.

• u8_tsv

Retransmission time-out calculation state variable.

• u8_trto

Retransmission time-out.

• u8_ttcpstateflags

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

116 Contiki 1.2-devel0 Data Structure Documentation

TCP state and flags.

• u8_ttimer

The retransmission timer.

• u8_tnrtx

The number of retransmissions for the last segment sent.

• u8_tappstate[UIP_APPSTATE_SIZE]

The application state.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

6.9 uip_eth_addr Struct Reference 117

6.9 uip_eth_addr Struct Reference

#include <uip_arp.h >

6.9.1 Detailed Description

Representation of a 48-bit Ethernet address.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

118 Contiki 1.2-devel0 Data Structure Documentation

6.10 uip_eth_hdr Struct Reference

#include <uip_arp.h >

Collaboration diagram for uip_eth_hdr:

uip_eth_hdr

uip_eth_addr

dest
src

6.10.1 Detailed Description

The Ethernet header.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

6.11 uip_stats Struct Reference 119

6.11 uip_stats Struct Reference

#include <uip.h >

6.11.1 Detailed Description

The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is set to 1.

Data Fields

• struct {
uip_stats_tdrop
uip_stats_trecv
uip_stats_tsent
uip_stats_tvhlerr
uip_stats_thblenerr
uip_stats_tlblenerr
uip_stats_tfragerr
uip_stats_tchkerr
uip_stats_tprotoerr

} ip

IP statistics.

• struct {
uip_stats_tdrop
uip_stats_trecv
uip_stats_tsent
uip_stats_ttypeerr

} icmp

ICMP statistics.

• struct {
uip_stats_tdrop
uip_stats_trecv
uip_stats_tsent
uip_stats_tchkerr
uip_stats_tackerr
uip_stats_trst
uip_stats_trexmit
uip_stats_tsyndrop
uip_stats_tsynrst

} tcp

TCP statistics.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

120 Contiki 1.2-devel0 Data Structure Documentation

6.11.2 Field Documentation

6.11.2.1 uip_stats_tuip_stats::ackerr

Number of TCP segments with a bad ACK number.

6.11.2.2 uip_stats_tuip_stats::chkerr

Number of TCP segments with a bad checksum.

6.11.2.3 uip_stats_tuip_stats::drop

Number of dropped TCP segments.

6.11.2.4 uip_stats_tuip_stats::fragerr

Number of packets dropped since they were IP fragments.

6.11.2.5 uip_stats_tuip_stats::hblenerr

Number of packets dropped due to wrong IP length, high byte.

6.11.2.6 uip_stats_tuip_stats::lblenerr

Number of packets dropped due to wrong IP length, low byte.

6.11.2.7 uip_stats_tuip_stats::protoerr

Number of packets dropped since they were neither ICMP, UDP nor TCP.

6.11.2.8 uip_stats_tuip_stats::recv

Number of recived TCP segments.

6.11.2.9 uip_stats_tuip_stats::rexmit

Number of retransmitted TCP segments.

6.11.2.10 uip_stats_tuip_stats::rst

Number of recevied TCP RST (reset) segments.

6.11.2.11 uip_stats_tuip_stats::sent

Number of sent TCP segments.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

6.11 uip_stats Struct Reference 121

6.11.2.12 uip_stats_tuip_stats::syndrop

Number of dropped SYNs due to too few connections was avaliable.

6.11.2.13 uip_stats_tuip_stats::synrst

Number of SYNs for closed ports, triggering a RST.

6.11.2.14 uip_stats_tuip_stats::typeerr

Number of ICMP packets with a wrong type.

6.11.2.15 uip_stats_tuip_stats::vhlerr

Number of packets dropped due to wrong IP version or header length.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

122 Contiki 1.2-devel0 Data Structure Documentation

6.12 uip_udp_conn Struct Reference

#include <uip.h >

6.12.1 Detailed Description

Representation of a uIP UDP connection.

Data Fields

• u16_tripaddr[2]

The IP address of the remote peer.

• u16_tlport

The local port number in network byte order.

• u16_trport

The remote port number in network byte order.

• u8_tappstate[UIP_APPSTATE_SIZE]

The application state.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

Chapter 7

Contiki 1.2-devel0 File Documentation

7.1 apps/program-handler.c File Reference

7.1.1 Detailed Description

The program handler, used for loading programs and starting the screensaver.

Author:
Adam Dunkels<adam@dunkels.com >

The Contiki program handler is responsible for the Contiki menu and the desktop icons, as well as for
loading programs and displaying a dialog with a message telling which program that is loading.

The program handler also is responsible for starting the screensaver when the CTK detects that it should
be started.

#include <string.h >

#include "ek.h"

#include "petsciiconv.h"

#include "ctk.h"

#include "ctk-draw.h"

#include "ctk-conf.h"

#include "log.h"

#include "loader.h"

#include "program-handler.h"

Functions

• void program_handler_add(structdsc∗dsc, char∗menuname, unsigned char desktop)

Add a program to the program handler.

• void program_handler_init(void)

Initializes the program handler.

mailto:adam@dunkels.com

124 Contiki 1.2-devel0 File Documentation

• void program_handler_load(char∗name, char∗arg)

Loads a program and displays a dialog telling the user about it.

• void program_handler_screensaver(char∗name)

Configures the name of the screensaver to be loaded when appropriate.

7.1.2 Function Documentation

7.1.2.1 void program_handler_add (structdsc∗ dsc, char ∗ menuname, unsigned chardesktop)

Add a program to the program handler.

Parameters:
dsc The DSC description structure for the program to be added.

menunameThe name that the program should have in the Contiki menu.

desktopFlag which specifies if the program should show up as an icon on the desktop or not.

Here is the call graph for this function:

program_handler_add ctk_menuitem_add

7.1.2.2 void program_handler_init (void)

Initializes the program handler.

Is called by the initialization before any programs have been added withprogram_handler_add().

Here is the call graph for this function:

program_handler_init

ctk_menu_new

ek_start ek_post

7.1.2.3 void program_handler_load (char∗ name, char ∗ arg)

Loads a program and displays a dialog telling the user about it.

Parameters:
name The name of the program to be loaded.

arg An argument which is passed to the new process when it is loaded.

Here is the call graph for this function:

program_handler_load

ctk_dialog_open

ek_post

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.1 apps/program-handler.c File Reference 125

7.1.2.4 void program_handler_screensaver (char∗ name)

Configures the name of the screensaver to be loaded when appropriate.

Parameters:
name The name of the screensaver or NULL if no screensaver should be used.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

126 Contiki 1.2-devel0 File Documentation

7.2 conf/uip-conf.h.example File Reference

7.2.1 Detailed Description

uIP configuration file.

Author:
Adam Dunkels<adam@dunkels.com >

This file contains configuration options for the uIP TCP/IP stack. Each Contiki port will contain its own
uip-conf.h file containing architecture specific configuration options.

Defines

• #defineUIP_CONF_MAX_CONNECTIONS40

The maximum number of TCP connections.

• #defineUIP_CONF_MAX_LISTENPORTS40

The maximum number of listening TCP ports.

• #defineUIP_CONF_BUFFER_SIZE400

The size of the uIP packet buffer.

• #defineUIP_CONF_BYTE_ORDERLITTLE_ENDIAN

The host byte order.

• #defineUIP_CONF_PINGADDRCONF0

IP address configuration through ping.

7.2.2 Define Documentation

7.2.2.1 #define UIP_CONF_BUFFER_SIZE 400

The size of the uIP packet buffer.

The uIP packet buffer should not be smaller than 60 bytes, and does not need to be larger than 1500 bytes.
Lower size results in lower TCP throughput, larger size results in higher TCP throughput.

7.2.2.2 #define UIP_CONF_BYTE_ORDER LITTLE_ENDIAN

The host byte order.

Used for telling uIP if the architecture has LITTLE_ENDIAN or BIG_ENDIAN byte order. x86 CPUs have
LITTLE_ENDIAN byte order, whereas Motorola CPUs have BIG_ENDIAN. Check the documentation of
the CPU to find out the byte order.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.2 conf/uip-conf.h.example File Reference 127

7.2.2.3 #define UIP_CONF_MAX_CONNECTIONS 40

The maximum number of TCP connections.

Since the TCP connections are statically allocated, turning this configuration knob down results in less
RAM used. Each TCP connection requires approximatly 30 bytes of memory.

7.2.2.4 #define UIP_CONF_MAX_LISTENPORTS 40

The maximum number of listening TCP ports.

Each listening TCP port requires 2 bytes of memory.

7.2.2.5 #define UIP_CONF_PINGADDRCONF 0

IP address configuration through ping.

uIP features IP address configuration using an ICMP echo (ping) packet. In this mode, the destination IP
address of the first ICMP echo packet that is received is used to set the host IP address.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

128 Contiki 1.2-devel0 File Documentation

7.3 conf/www-conf.h.example File Reference

7.3.1 Detailed Description

The Contiki web browser configuration file.

Author:
Adam Dunkels<adam@dunkels.com >

Defines

• #defineWWW_CONF_WEBPAGE_WIDTH36

The width of the web page viewing area, measured in characters.

• #defineWWW_CONF_WEBPAGE_HEIGHT17

The height of the web page viewing area, measured in characters.

• #defineWWW_CONF_HISTORY_SIZE4

The size of the "Back" history.

• #defineWWW_CONF_MAX_URLLEN100

The maximum length of the URLs the web browser will handle.

• #defineWWW_CONF_MAX_NUMPAGEWIDGETS20

The maxiumum number of widgets (i.e., hyperlinks, form elements) on a single web page view.

• #defineWWW_CONF_RENDERSTATE1

Turns support for the<center> tag on or off, and must be on for HTML forms to work.

• #defineWWW_CONF_FORMS1

Toggles support for HTML forms.

• #defineWWW_CONF_MAX_FORMACTIONLEN40

Maximum length of HTML form action URLs.

• #defineWWW_CONF_MAX_FORMNAMELEN20

Maximum length of HTML form name.

• #defineWWW_CONF_MAX_INPUTNAMELEN20

Maximum length of HTML form input name.

• #defineWWW_CONF_MAX_INPUTVALUELEN(WWW_CONF_WEBPAGE_WIDTH - 1)

Maximum length of HTML form input value.

• #defineWWW_CONF_HOMEPAGE"http://contiki.c64.org/"

The defaule home page.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.3 conf/www-conf.h.example File Reference 129

7.3.2 Define Documentation

7.3.2.1 #define WWW_CONF_MAX_NUMPAGEWIDGETS 20

The maxiumum number of widgets (i.e., hyperlinks, form elements) on a single web page view.

Note:
This does not limit the total number of widgets in a web page, only the number of widget that are
visible simultaneously.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

130 Contiki 1.2-devel0 File Documentation

7.4 ctk/ctk-draw.h File Reference

7.4.1 Detailed Description

CTK screen drawing module interface, ctk-draw.

Author:
Adam Dunkels<adam@dunkels.com >

This file contains the interface for the ctk-draw module.The ctk-draw module takes care of the actual screen
drawing for CTK by implementing a handful of functions that are called by CTK.

#include "ctk.h"

#include "ctk-arch.h"

This graph shows which files directly or indirectly include this file:

ctk-draw.h

program-handler.c ctk.c

Functions

• void ctk_draw_init(void)

The initialization function.

• void ctk_draw_clear(unsigned char clipy1, unsigned char clipy2)

Clear the screen between the clip bounds.

• void ctk_draw_clear_window(struct ctk_window ∗window, unsigned char focus, unsigned char
clipy1, unsigned char clipy2)

Draw the window background.

• void ctk_draw_window(struct ctk_window∗window, unsigned char focus, unsigned char clipy1,
unsigned char clipy2)

Draw a window onto the screen.

• void ctk_draw_dialog(structctk_window∗dialog)

Draw a dialog onto the screen.

• void ctk_draw_widget(structctk_widget∗w, unsigned char focus, unsigned char clipy1, unsigned
char clipy2)

Draw a widget on a window.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.5 ctk/ctk.c File Reference 131

7.5 ctk/ctk.c File Reference

7.5.1 Detailed Description

The Contiki Toolkit CTK, the Contiki GUI.

Author:
Adam Dunkels<adam@dunkels.com >

#include "ek.h"

#include "cc.h"

#include "ctk.h"

#include "ctk-draw.h"

#include "ctk-conf.h"

#include "ctk-mouse.h"

#include "timer.h"

#include <string.h >

Functions

• void ctk_mode_set(unsigned char m)

Sets the current CTK mode.

• unsigned charctk_mode_get(void)

Retrieves the current CTK mode.

• void ctk_icon_add(CC_REGISTER_ARG structctk_widget∗icon, ek_id_t id)

Add an icon to the desktop.

• void ctk_dialog_open(structctk_window∗d)

Open a dialog box.

• void ctk_dialog_close(void)

Close the dialog box, if one is open.

• void ctk_window_open(CC_REGISTER_ARG structctk_window∗w)

Open a window, or bring window to front if already open.

• void ctk_window_close(structctk_window∗w)

Close a window if it is open.

• void ctk_window_clear(structctk_window∗w)

Remove all widgets from a window.

• void ctk_menu_add(structctk_menu∗menu)

Add a menu to the menu bar.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

132 Contiki 1.2-devel0 File Documentation

• void ctk_menu_remove(structctk_menu∗menu)

Remove a menu from the menu bar.

• void ctk_window_redraw(structctk_window∗w)

Redraw a window.

• void ctk_window_new(structctk_window∗window, unsigned char w, unsigned char h, char∗title)

Create a new window.

• void ctk_dialog_new(CC_REGISTER_ARG structctk_window∗dialog, unsigned char w, unsigned
char h)

Creates a new dialog.

• void ctk_menu_new(CC_REGISTER_ARG structctk_menu∗menu, char∗title)

Creates a new menu.

• unsigned charctk_menuitem_add(CC_REGISTER_ARG structctk_menu∗menu, char∗name)

Adds a menu item to a menu.

• void CC_FASTCALLctk_widget_add(CC_REGISTER_ARG structctk_window∗window, CC_-
REGISTER_ARG structctk_widget∗widget)

Adds a widget to a window.

Variables

• ek_event_tctk_signal_keypress

Emitted for every key being pressed.

• ek_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

• ek_event_tctk_signal_button_activate

Same as ctk_signal_widget_activate.

• ek_event_tctk_signal_widget_select

Emitted when a widget is selected.

• ek_event_tctk_signal_button_hover

Same as ctk_signal_widget_select.

• ek_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

• ek_event_tctk_signal_hyperlink_hover

Same as ctk_signal_widget_select.

• ek_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.5 ctk/ctk.c File Reference 133

• ek_event_tctk_signal_window_close

Emitted when a window is closed.

• ek_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

• ek_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

134 Contiki 1.2-devel0 File Documentation

7.6 ctk/ctk.h File Reference

7.6.1 Detailed Description

CTK header file.

Author:
Adam Dunkels<adam@dunkels.com >

The CTK header file contains functioin declarations and definitions of CTK structures and macros.

#include "ctk-conf.h"

#include "ctk-arch.h"

#include "ek.h"

#include "cc.h"

This graph shows which files directly or indirectly include this file:

ctk.h

dsc.h

program-handler.c

ctk-draw.h

ctk.c

ctk-textedit.h

ctk-textedit.c

Data Structures

• structctk_widget

The generic CTK widget structure that contains all other widget structures.

• structctk_window

Representation of a CTK window.

• structctk_menuitem

Representation of an individual menu item.

• structctk_menu

Representation of an individual menu.

• structctk_menus

Representation of the menu bar.

Defines

• #defineCTK_WIDGET_SEPARATOR1

Widget number: The CTK separator widget.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.6 ctk/ctk.h File Reference 135

• #defineCTK_WIDGET_LABEL 2

Widget number: The CTK label widget.

• #defineCTK_WIDGET_BUTTON3

Widget number: The CTK button widget.

• #defineCTK_WIDGET_HYPERLINK4

Widget number: The CTK hyperlink widget.

• #defineCTK_WIDGET_TEXTENTRY5

Widget number: The CTK textentry widget.

• #defineCTK_WIDGET_BITMAP6

Widget number: The CTK bitmap widget.

• #defineCTK_WIDGET_ICON7

Widget number: The CTK icon widget.

• #defineCTK_SEPARATOR(x, y, w) NULL, NULL, x, y, CTK_WIDGET_SEPARATOR, w, 1,
CTK_WIDGET_FLAG_INITIALIZER(0)

Instantiating macro for the ctk_separator widget.

• #defineCTK_BUTTON(x, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1, CTK_-
WIDGET_FLAG_INITIALIZER(0) text

Instantiating macro for the ctk_button widget.

• #defineCTK_LABEL(x, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h, CTK_-
WIDGET_FLAG_INITIALIZER(0) text,

Instantiating macro for the ctk_label widget.

• #defineCTK_HYPERLINK(x, y, w, text, url) NULL, NULL, x, y, CTK_WIDGET_HYPERLINK,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, url

Instantiating macro for the ctk_hyperlink widget.

• #defineCTK_TEXTENTRY_CLEAR(e) do {memset((e)→ text, 0, (e)→ len); (e)→ xpos = 0;}
while(0);

Clears a text entry widget and sets the cursor to the start of the text line.

• #defineCTK_TEXTENTRY(x, y, w, h, text, len)

Instantiating macro for the ctk_textentry widget.

• #defineCTK_ICON(title, bitmap, textmap)

Instantiating macro for the ctk_icon widget.

• #defineCTK_ICON_ADD(icon, id) ctk_icon_add((structctk_widget∗)icon, id)

Add an icon to the desktop.

• #defineCTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (structctk_widget∗)widg)

Add a widget to a window.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

136 Contiki 1.2-devel0 File Documentation

• #defineCTK_WIDGET_FOCUS(win, widg) (win)→ focused = (structctk_widget∗)(widg)

Set focus to a widget.

• #defineCTK_WIDGET_REDRAW(widg) ctk_widget_redraw((structctk_widget∗)widg)

Add a widget to the redraw queue.

• #defineCTK_WIDGET_TYPE(w) ((w)→ type)

Obtain the type of a widget.

• #defineCTK_WIDGET_SET_WIDTH(widget, width)

Sets the width of a widget.

• #defineCTK_WIDGET_XPOS(w) (((structctk_widget∗)(w))→ x)

Retrieves the x position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_SET_XPOS(w, xpos) ((structctk_widget∗)(w))→ x = (xpos)

Sets the x position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_YPOS(w) (((structctk_widget∗)(w))→ y)

Retrieves the y position of a widget, relative to the window in which the widget is contained.

• #defineCTK_WIDGET_SET_YPOS(w, ypos) ((structctk_widget∗)(w))→ y = (ypos)

Sets the y position of a widget, relative to the window in which the widget is contained.

• #definectk_label_set_height(w, height) (w)→ widget.label.h = (height)

Set the height of a label.

• #definectk_label_set_text(l, t) (l) → text = (t)

Set the text of a label.

• #definectk_button_set_text(b, t) (b)→ text = (t)

Set the text of a button.

• #defineCTK_FOCUS_NONE0

Widget focus flag: no focus.

• #defineCTK_FOCUS_WIDGET1

Widget focus flag: widget has focus.

• #defineCTK_FOCUS_WINDOW2

Widget focus flag: widget’s window is the foremost one.

• #defineCTK_FOCUS_DIALOG4

Widget focus flag: widget is in a dialog.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.6 ctk/ctk.h File Reference 137

Functions

• void ctk_init (void)

Initializes the Contiki Toolkit.

• void ctk_mode_set(unsigned char mode)

Sets the current CTK mode.

• unsigned charctk_mode_get(void)

Retrieves the current CTK mode.

• void ctk_window_new(structctk_window∗window, unsigned char w, unsigned char h, char∗title)

Create a new window.

• void ctk_window_clear(structctk_window∗w)

Remove all widgets from a window.

• void ctk_window_close(structctk_window∗w)

Close a window if it is open.

• void ctk_window_redraw(structctk_window∗w)

Redraw a window.

• void ctk_dialog_open(structctk_window∗d)

Open a dialog box.

• void ctk_dialog_close(void)

Close the dialog box, if one is open.

• void ctk_menu_add(structctk_menu∗menu)

Add a menu to the menu bar.

• void ctk_menu_remove(structctk_menu∗menu)

Remove a menu from the menu bar.

• void ctk_widget_redraw(structctk_widget∗w)

Redraws a widget.

• void ctk_desktop_redraw(struct ctk_desktop∗d)

Redraw the entire desktop.

• unsigned charctk_desktop_width(struct ctk_desktop∗d)

Gets the width of the desktop.

• unsigned charctk_desktop_height(struct ctk_desktop∗d)

Gets the height of the desktop.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

138 Contiki 1.2-devel0 File Documentation

Variables

• ek_event_tctk_signal_keypress

Emitted for every key being pressed.

• ek_event_tctk_signal_widget_activate

Emitted when a widget is activated (pressed).

• ek_event_tctk_signal_widget_select

Emitted when a widget is selected.

• ek_event_tctk_signal_menu_activate

Emitted when a menu item is activated.

• ek_event_tctk_signal_window_close

Emitted when a window is closed.

• ek_event_tctk_signal_pointer_move

Emitted when the mouse pointer is moved.

• ek_event_tctk_signal_pointer_button

Emitted when a mouse button is pressed.

• ek_event_tctk_signal_button_activate

Same as ctk_signal_widget_activate.

• ek_event_tctk_signal_button_hover

Same as ctk_signal_widget_select.

• ek_event_tctk_signal_hyperlink_activate

Emitted when a hyperlink is activated.

• ek_event_tctk_signal_hyperlink_hover

Same as ctk_signal_widget_select.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.7 ek/arg.c File Reference 139

7.7 ek/arg.c File Reference

7.7.1 Detailed Description

Argument buffer for passing arguments when starting processes.

Author:
Adam Dunkels<adam@dunkels.com >

#include "arg.h"

Functions

• char∗ arg_alloc(char size)

Allocates an argument buffer.

• void arg_free(char∗arg)

Deallocates an argument buffer.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

140 Contiki 1.2-devel0 File Documentation

7.8 ek/dsc.h File Reference

7.8.1 Detailed Description

Declaration of the DSC program description structure.

Author:
Adam Dunkels<adam@dunkels.com >

#include "ctk.h"

Data Structures

• structdsc

The DSC program description structure.

Defines

• #defineDSC(dscname, description, prgname, initfunc, icon) const structdscdscname = {description,
prgname, icon}

Intantiating macro for the DSC structure.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.9 ek/ek.c File Reference 141

7.9 ek/ek.c File Reference

7.9.1 Detailed Description

Event kernel, event dispatcher and handler of uIP events.

Author:
Adam Dunkels<adam@dunkels.com >

The dispatcher module is the event kernel in Contiki and handles processes, events and uIP events. All
process execution is initiated by the dispatcher.

#include "ek.h"

#include <string.h >

Functions

• ek_event_tek_alloc_event(void)

Allocates a event number.

• ek_id_tek_start(CC_REGISTER_ARG struct ek_proc∗p)

Starts a new process.

• void ek_exit(void)

Exit the currently running process.

• ek_proc∗ ek_process(ek_id_t id)

Finds the process structure for a specific process ID.

• void ek_init (void)

Initializes the dispatcher module.

• void ek_process_event(void)

Process the next event in the event queue and deliver it to listening processes.

• void ek_process_poll(void)

Call each process’ poll handler.

• int ek_run(void)

Run the system once - call poll handlers and process one event.

• ek_err_tek_post(ek_id_t id, ek_event_t s, ek_data_t data)

Post an asynchronous event.

• void ek_post_synch(ek_id_t id, ek_event_t ev, ek_data_t data)

Post a synchronous event.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

142 Contiki 1.2-devel0 File Documentation

Variables

• ek_event_tek_event_quit

The "quit" event.

• ek_event_tek_event_msg

A generic message event.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.10 ek/loader.h File Reference 143

7.10 ek/loader.h File Reference

7.10.1 Detailed Description

Default definitions and error values for the Contiki program loader.

Author:
Adam Dunkels<adam@dunkels.com >

#include "loader-arch.h"

This graph shows which files directly or indirectly include this file:

loader.h

ek.h

ek.c

program-handler.c

ctk.h

ctk-draw.h dsc.h

ctk.c

ctk-textedit.h

ctk-textedit.c

resolv.c mt.h

mt.c

Defines

• #defineLOADER_OK0 /∗∗< No error.∗/
No error.

• #defineLOADER_ERR_READ1 /∗∗< Read error.∗/
Read error.

• #defineLOADER_ERR_HDR2 /∗∗< Header error.∗/
Header error.

• #defineLOADER_ERR_OS3 /∗∗< Wrong OS.∗/
Wrong OS.

• #defineLOADER_ERR_FMT4 /∗∗< Data format error.∗/
Data format error.

• #defineLOADER_ERR_MEM5 /∗∗< Not enough memory.∗/
Not enough memory.

• #defineLOADER_ERR_OPEN6 /∗∗< Could not open file.∗/
Could not open file.

• #defineLOADER_ERR_ARCH7 /∗∗< Wrong architecture.∗/
Wrong architecture.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

144 Contiki 1.2-devel0 File Documentation

• #defineLOADER_ERR_VERSION8 /∗∗< Wrong OS version.∗/
Wrong OS version.

• #defineLOADER_ERR_NOLOADER9 /∗∗< Program loading not supported.∗/
Program loading not supported.

• #defineLOADER_LOAD(name, arg) LOADER_ERR_NOLOADER

Load and execute a program.

• #defineLOADER_UNLOAD()

Unload a program from memory.

• #defineLOADER_LOAD_DSC(name) NULL

Load a DSC (program description).

• #defineLOADER_UNLOAD_DSC(dsc)

Unload a DSC (program description).

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.11 ek/mt.c File Reference 145

7.11 ek/mt.c File Reference

7.11.1 Detailed Description

Implementation of the archtecture agnostic parts of the preemptive multithreading library for Contiki.

Author:
Adam Dunkels<adam@sics.se >

#include "ek.h"

#include "mt.h"

#include "cc.h"

Functions

• void mt_init (void)

Initializes the multithreading library.

• void mt_remove(void)

Uninstalls library and cleans up.

• void mt_start(struct mt_thread∗thread, void(∗function)(void∗), void ∗data)

Starts a multithreading thread.

• void mt_exec(struct mt_thread∗thread)

Start executing a thread.

• void mt_exit(void)

Exit a thread.

• void mt_exec_event(struct mt_thread∗thread, ek_event_t ev, ek_data_t data)

Post an event to a thread.

• void mt_yield(void)

Voluntarily give up the processor.

• void mt_post(ek_id_t id, ek_event_t ev, ek_data_t data)

Emit a signal to another process.

• void mt_wait(ek_event_t∗ev, ek_data_t∗data)

Block and wait for an event to occur.

• void mtp_start(struct mtp_thread∗t, void(∗function)(void∗), void ∗data)

Start a thread.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

146 Contiki 1.2-devel0 File Documentation

7.12 ek/mt.h File Reference

7.12.1 Detailed Description

Header file for the preemptive multitasking library for Contiki.

Author:
Adam Dunkels<adam@sics.se >

#include "ek.h"

#include "mtarch.h"

#include "mt.h"

This graph shows which files directly or indirectly include this file:

mt.h

mt.c

Defines

• #defineMT_OK

No error.

• #defineMTP(thread, proc, name)

Declare a thread.

Functions

• void mtarch_init(void)

Initialize the architecture specific support functions for the multi-thread library.

• void mtarch_remove(void)

Uninstall library and clean up.

• void mtarch_start(struct mtarch_thread∗thread, void(∗function)(void∗data), void∗data)

Setup the stack frame for a thread that is being started.

• void mtarch_yield(void)

Yield the processor.

• void mtarch_exec(struct mtarch_thread∗thread)

Start executing a thread.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

7.12 ek/mt.h File Reference 147

• void mt_init (void)

Initializes the multithreading library.

• void mt_remove(void)

Uninstalls library and cleans up.

• void mt_start(struct mt_thread∗thread, void(∗function)(void∗), void ∗data)

Starts a multithreading thread.

• void mt_exec(struct mt_thread∗thread)

Start executing a thread.

• void mt_exec_event(struct mt_thread∗thread, ek_event_t s, ek_data_t data)

Post an event to a thread.

• void mt_yield(void)

Voluntarily give up the processor.

• void mt_post(ek_id_t id, ek_event_t s, ek_data_t data)

Emit a signal to another process.

• void mt_wait(ek_event_t∗s, ek_data_t∗data)

Block and wait for an event to occur.

• void mt_exit(void)

Exit a thread.

• void mtp_start(struct mtp_thread∗t, void(∗function)(void∗), void ∗data)

Start a thread.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

148 Contiki 1.2-devel0 File Documentation

7.13 ek/pt-sem.h File Reference

7.13.1 Detailed Description

Couting semaphores implemented on protothreads.

Author:
Adam Dunkels<adam@sics.se >

#include "pt.h"

Defines

• #definePT_SEM_INIT(s, c)

Initialize a semaphore.

• #definePT_SEM_WAIT(pt, s)

Wait for a semaphore.

• #definePT_SEM_SIGNAL(pt, s)

Signal a semaphore.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

7.14 ek/pt.h File Reference 149

7.14 ek/pt.h File Reference

7.14.1 Detailed Description

Protothreads implementation.

Author:
Adam Dunkels<adam@sics.se >

#include "lc.h"

This graph shows which files directly or indirectly include this file:

pt.h

pt-sem.h socket.h

Defines

• #definePT_THREAD(name_args)

Declaration of a protothread.

• #definePT_INIT(pt)

Initialize a protothread.

• #definePT_BEGIN(pt)

Start a protothread.

• #definePT_WAIT_UNTIL(pt, condition)

Block and wait until condition is true.

• #definePT_WAIT_WHILE(pt, cond)

Block and wait while condition is true.

• #definePT_WAIT_THREAD(pt, thread)

Block and wait until a child protothread completes.

• #definePT_SPAWN(pt, thread)

Spawn a child protothread and wait until it exits.

• #definePT_RESTART(pt)

Restart the protothread.

• #definePT_EXIT(pt)

Exit the protothread.

• #definePT_END(pt)

Declare the end of a protothread.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

150 Contiki 1.2-devel0 File Documentation

7.15 lib/cc.h File Reference

7.15.1 Detailed Description

Default definitions of C compiler quirk work-arounds.

Author:
Adam Dunkels<adam@dunkels.com >

This file is used for making use of extra functionality of some C compilers used for Contiki, and defining
work-arounds for various quirks and problems with some other C compilers.

#include "cc-conf.h"

This graph shows which files directly or indirectly include this file:

cc.h

ek.h

ek.c

program-handler.c

ctk.h

ctk-draw.h dsc.h

ctk.c

ctk-textedit.h

ctk-textedit.c

resolv.cmt.h

mt.c

Defines

• #defineCC_REGISTER_ARG

Configure if the C compiler supports the "register" keyword for function arguments.

• #defineCC_FUNCTION_POINTER_ARGS0

Configure if the C compiler supports the arguments for function pointers.

• #defineCC_FASTCALL

Configure if the C compiler supports fastcall function declarations.

• #defineCC_UNSIGNED_CHAR_BUGS0

Configure work-around for unsigned char bugs with sdcc.

• #defineCC_DOUBLE_HASH0

Configure if C compiler supports double hash marks in C macros.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.16 lib/ctk-textedit.c File Reference 151

7.16 lib/ctk-textedit.c File Reference

7.16.1 Detailed Description

An experimental CTK text edit widget.

Author:
Adam Dunkels<adam@dunkels.com >

This module contains an experimental CTK widget which is implemented in the application process rather
than in the CTK process. The widget is instantiated in a similar fashion as other CTK widgets, but is
different from other widgets in that it requires a signal handler function to be called by the process signal
handler function.

#include "ctk-textedit.h"

#include <string.h >

Functions

• void ctk_textedit_add(structctk_window∗w, struct ctk_textedit∗t)
Add a CTK textedit widget to a window.

• void ctk_textedit_eventhandler(struct ctk_textedit∗t, ek_event_t s, ek_data_t data)

The CTK textedit signal handler.

7.16.2 Function Documentation

7.16.2.1 void ctk_textedit_add (structctk_window ∗ w, struct ctk_textedit ∗ t)

Add a CTK textedit widget to a window.

Parameters:
w A pointer to the window to which the entry is to be added.

t A pointer to the CTK textentry structure.

7.16.2.2 void ctk_textedit_eventhandler (struct ctk_textedit∗ t, ek_event_ts, ek_data_tdata)

The CTK textedit signal handler.

This function must be called as part of the normal signal handler of the process that contains the CTK
textentry structure.

Parameters:
t A pointer to the CTK textentry structure.

s The signal number.

data The signal data.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

152 Contiki 1.2-devel0 File Documentation

7.17 lib/ctk-textedit.h File Reference

7.17.1 Detailed Description

Header file for the experimental application level CTK textedit widget.

Author:
Adam Dunkels<adam@dunkels.com >

#include "ctk.h"

This graph shows which files directly or indirectly include this file:

ctk-textedit.h

ctk-textedit.c

Defines

• #defineCTK_TEXTEDIT(tx, ty, tw, th, ttext) {CTK_LABEL(tx, ty, tw, th, ttext)}, 0, 0

Instantiating macro for the CTK textedit widget.

Functions

• void ctk_textedit_add(structctk_window∗w, struct ctk_textedit∗t)
Add a CTK textedit widget to a window.

• void ctk_textedit_eventhandler(struct ctk_textedit∗t, ek_event_t s, ek_data_t data)

The CTK textedit signal handler.

7.17.2 Define Documentation

7.17.2.1 #define CTK_TEXTEDIT(tx, ty, tw, th, ttext) {CTK_LABEL(tx, ty, tw, th, ttext)}, 0, 0

Instantiating macro for the CTK textedit widget.

Parameters:
tx The x position of the widget.

ty The y position of the widget.

tw The width of the widget.

th The height of the widget.

ttext The text buffer to be edited.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.17 lib/ctk-textedit.h File Reference 153

7.17.3 Function Documentation

7.17.3.1 void ctk_textedit_add (structctk_window ∗ w, struct ctk_textedit ∗ t)

Add a CTK textedit widget to a window.

Parameters:
w A pointer to the window to which the entry is to be added.

t A pointer to the CTK textentry structure.

7.17.3.2 void ctk_textedit_eventhandler (struct ctk_textedit∗ t, ek_event_ts, ek_data_tdata)

The CTK textedit signal handler.

This function must be called as part of the normal signal handler of the process that contains the CTK
textentry structure.

Parameters:
t A pointer to the CTK textentry structure.

s The signal number.

data The signal data.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

154 Contiki 1.2-devel0 File Documentation

7.18 lib/memb.c File Reference

7.18.1 Detailed Description

Memory block allocation routines.

Author:
Adam Dunkels<adam@sics.se >

#include <string.h >

#include "memb.h"

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

7.19 lib/memb.h File Reference 155

7.19 lib/memb.h File Reference

7.19.1 Detailed Description

Memory block allocation routines.

Author:
Adam Dunkels<adam@sics.se >

This graph shows which files directly or indirectly include this file:

memb.h

socket.h memb.c

Defines

• #defineMEMB(name, size, num)

Declare a memory block.

Functions

• void memb_init(struct memb_blocks∗m)

Initialize a memory block that was declared withMEMB().

• char∗ memb_alloc(struct memb_blocks∗m)

Allocate a memory block from a block of memory declared withMEMB().

• charmemb_ref(struct memb_blocks∗m, char∗ptr)

Increase the reference count for a memory chunk.

• charmemb_free(struct memb_blocks∗m, void∗ptr)

Deallocate a memory block from a memory block previously declared withMEMB().

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

156 Contiki 1.2-devel0 File Documentation

7.20 lib/petsciiconv.h File Reference

7.20.1 Detailed Description

PETSCII/ASCII conversion functions.

Author:
Adam Dunkels<adam@dunkels.com >

The Commodore based Contiki targets all have a special character encoding called PETSCII which differs
from the ASCII encoding that normally is used for representing characters.

Note:
For targets that do not use PETSCII encoding the C compiler define WITH_ASCII should be used to
avoid the PETSCII converting functions.

This graph shows which files directly or indirectly include this file:

petsciiconv.h

program-handler.c

Functions

• void petsciiconv_toascii(char∗buf, unsigned int len)

Convert a text buffer from PETSCII to ASCII.

• void petsciiconv_topetscii(char∗buf, unsigned int len)

Convert a text buffer from ASCII to PETSCII.

7.20.2 Function Documentation

7.20.2.1 void petsciiconv_toascii (char∗ buf, unsigned int len)

Convert a text buffer from PETSCII to ASCII.

Parameters:
buf A pointer to the buffer which is to be converted.

len The length of the buffer to be converted.

7.20.2.2 void petsciiconv_topetscii (char∗ buf, unsigned int len)

Convert a text buffer from ASCII to PETSCII.

Parameters:
buf A pointer to the buffer which is to be converted.

len The length of the buffer to be converted.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.21 uip/resolv.c File Reference 157

7.21 uip/resolv.c File Reference

7.21.1 Detailed Description

DNS host name to IP address resolver.

Author:
Adam Dunkels<adam@dunkels.com >

This file implements a DNS host name to IP address resolver.

#include "ek.h"

#include "tcpip.h"

#include "resolv.h"

#include <string.h >

Functions

• void resolv_query(char∗name)

Queues a name so that a question for the name will be sent out.

• u16_t∗ resolv_lookup(char∗name)

Look up a hostname in the array of known hostnames.

• u16_t∗ resolv_getserver(void)

Obtain the currently configured DNS server.

• void resolv_conf(u16_t∗dnsserver)

Configure a DNS server.

• void resolv_init(char∗arg)

Initalize the resolver.

Variables

• ek_event_tresolv_event_found

Signal that is sent when a DNS name has been resolved.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

158 Contiki 1.2-devel0 File Documentation

7.22 uip/resolv.h File Reference

7.22.1 Detailed Description

uIP DNS resolver code header file.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

This graph shows which files directly or indirectly include this file:

resolv.h

resolv.c

Functions

• void resolv_conf(u16_t∗dnsserver)

Configure a DNS server.

• u16_t∗ resolv_getserver(void)

Obtain the currently configured DNS server.

• void resolv_init(char∗arg)

Initalize the resolver.

• u16_t∗ resolv_lookup(char∗name)

Look up a hostname in the array of known hostnames.

• void resolv_query(char∗name)

Queues a name so that a question for the name will be sent out.

Variables

• ek_event_tresolv_event_found

Signal that is sent when a DNS name has been resolved.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.23 uip/socket.h File Reference 159

7.23 uip/socket.h File Reference

7.23.1 Detailed Description

Socket library header file.

Author:
Adam Dunkels<adam@sics.se >

#include "pt.h"

#include "uipbuf.h"

#include "memb.h"

Data Structures

• structsocket

The representation of a socket.

Defines

• #defineSOCKET_INIT(socket, buffer, buffersize)

Initialize a socket.

• #defineSOCKET_BEGIN(socket)

Start the socket protothread in a function.

• #defineSOCKET_SEND(socket, data, datalen)

Send data.

• #defineSOCKET_CLOSE(socket)

Close a socket.

• #defineSOCKET_READTO(socket, c)

Read data up to a specified character.

• #defineSOCKET_DATALEN(socket)

The length of the data that was previously read.

• #defineSOCKET_EXIT(socket)

Exit the socket’s protothread.

• #defineSOCKET_CLOSE_EXIT(socket)

Close a socket and exit the socket’s protothread.

• #defineSOCKET_NEWDATA(socket)

Check if new data has arrived on a socket.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

160 Contiki 1.2-devel0 File Documentation

• #defineSOCKET_WAIT_UNTIL(socket, condition)

Wait until data arrives or until a condition is true.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.24 uip/uip-split.h File Reference 161

7.24 uip/uip-split.h File Reference

7.24.1 Detailed Description

Module for splitting outbound TCP segments in two to avoid the delayed ACK throughput degradation.

Author:
Adam Dunkels<adam@sics.se >

Functions

• void uip_split_output(void)

Handle outgoing packets.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

162 Contiki 1.2-devel0 File Documentation

7.25 uip/uip.c File Reference

7.25.1 Detailed Description

The uIP TCP/IP stack code.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

#include "uipopt.h"

#include "uip_arch.h"

Functions

• void uip_init (void)

uIP initialization function.

• uip_conn∗ uip_connect(u16_t∗ripaddr, u16_t rport)

Connect to a remote host using TCP.

• uip_udp_conn∗ uip_udp_new(u16_t∗ripaddr, u16_t rport)

Set up a new UDP connection.

• void uip_unlisten(u16_t port)

Stop listening to the specified port.

• void uip_listen(u16_t port)

Start listening to the specified port.

• u16_thtons(u16_t val)

Convert 16-bit quantity from host byte order to network byte order.

Variables

• u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

• u8_t∗ uip_appdata

Pointer to the application data in the packet buffer.

• u8_tuip_acc32[4]

4-byte array used for the 32-bit sequence number calculations.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.26 uip/uip.h File Reference 163

7.26 uip/uip.h File Reference

7.26.1 Detailed Description

Header file for the uIP TCP/IP stack.

Author:
Adam Dunkels<adam@dunkels.com >

The uIP TCP/IP stack header file contains definitions for a number of C macros that are used by uIP
programs as well as internal uIP structures, TCP/IP header structures and function declarations.

#include "uipopt.h"

This graph shows which files directly or indirectly include this file:

uip.h

uip.c uip_arp.h

uip_arp.c

resolv.h

resolv.c

Data Structures

• structuip_conn

Representation of a uIP TCP connection.

• structuip_udp_conn

Representation of a uIP UDP connection.

• structuip_stats

The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is set to 1.

Defines

• #defineuip_sethostaddr(addr)

Set the IP address of this host.

• #defineuip_gethostaddr(addr)

Get the IP address of this host.

• #defineuip_setdraddr(addr)

Set the default router’s IP address.

• #defineuip_setnetmask(addr)

Set the netmask.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

164 Contiki 1.2-devel0 File Documentation

• #defineuip_getdraddr(addr)

Get the default router’s IP address.

• #defineuip_getnetmask(addr)

Get the netmask.

• #defineuip_input()

Process an incoming packet.

• #defineuip_periodic(conn)

Periodic processing for a connection identified by its number.

• #defineuip_periodic_conn(conn)

Periodic processing for a connection identified by a pointer to its structure.

• #defineuip_udp_periodic(conn)

Periodic processing for a UDP connection identified by its number.

• #defineuip_udp_periodic_conn(conn)

Periodic processing for a UDP connection identified by a pointer to its structure.

• #defineuip_send(data, len)

Send data on the current connection.

• #defineuip_datalen()

The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.

• #defineuip_urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

• #defineuip_close()

Close the current connection.

• #defineuip_abort()

Abort the current connection.

• #defineuip_stop()

Tell the sending host to stop sending data.

• #defineuip_stopped(conn)

Find out if the current connection has been previously stopped withuip_stop().

• #defineuip_restart()

Restart the current connection, if is has previously been stopped withuip_stop().

• #defineuip_udpconnection()

Is the current connection a UDP connection?

• #defineuip_newdata()

Is new incoming data available?

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.26 uip/uip.h File Reference 165

• #defineuip_acked()

Has previously sent data been acknowledged?

• #defineuip_connected()

Has the connection just been connected?

• #defineuip_closed()

Has the connection been closed by the other end?

• #defineuip_aborted()

Has the connection been aborted by the other end?

• #defineuip_timedout()

Has the connection timed out?

• #defineuip_rexmit()

Do we need to retransmit previously data?

• #defineuip_poll()

Is the connection being polled by uIP?

• #defineuip_initialmss()

Get the initial maxium segment size (MSS) of the current connection.

• #defineuip_mss()

Get the current maxium segment size that can be sent on the current connection.

• #defineuip_udp_remove(conn)

Removed a UDP connection.

• #defineuip_udp_bind(conn, port)

Bind a UDP connection to a local port.

• #defineuip_udp_send(len)

Send a UDP datagram of length len on the current connection.

• #defineuip_ipaddr(addr, addr0, addr1, addr2, addr3)

Pack an IP address into a 4-byte array which is used by uIP to represent IP addresses.

• #defineuip_ipaddr_copy(dest, src)

Copy an IP address to another IP address.

• #defineuip_ipaddr_cmp(addr1, addr2)

Compare two IP addresses.

• #defineuip_ipaddr_maskcmp(addr1, addr2, mask)

Compare two IP addresses with netmasks.

• #defineuip_ipaddr_mask(dest, src, mask)

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

166 Contiki 1.2-devel0 File Documentation

Mask out the network part of an IP address.

• #defineuip_ipaddr1(addr)

Pick the first octet of an IP address.

• #defineuip_ipaddr2(addr)

Pick the second octet of an IP address.

• #defineuip_ipaddr3(addr)

Pick the third octet of an IP address.

• #defineuip_ipaddr4(addr)

Pick the fourth octet of an IP address.

• #defineHTONS(n)

Convert 16-bit quantity from host byte order to network byte order.

Functions

• void uip_init (void)

uIP initialization function.

• void uip_listen(u16_t port)

Start listening to the specified port.

• void uip_unlisten(u16_t port)

Stop listening to the specified port.

• uip_conn∗ uip_connect(u16_t∗ripaddr, u16_t port)

Connect to a remote host using TCP.

• uip_udp_conn∗ uip_udp_new(u16_t∗ripaddr, u16_t rport)

Set up a new UDP connection.

• u16_thtons(u16_t val)

Convert 16-bit quantity from host byte order to network byte order.

Variables

• u8_tuip_buf[UIP_BUFSIZE+2]

The uIP packet buffer.

• u8_t∗ uip_appdata

Pointer to the application data in the packet buffer.

• u8_tuip_acc32[4]

4-byte array used for the 32-bit sequence number calculations.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

7.26 uip/uip.h File Reference 167

• uip_statsuip_stat

The uIP TCP/IP statistics.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

168 Contiki 1.2-devel0 File Documentation

7.27 uip/uip_arp.c File Reference

7.27.1 Detailed Description

Implementation of the ARP Address Resolution Protocol.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip_arp.h"

#include <string.h >

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

7.28 uip/uip_arp.h File Reference 169

7.28 uip/uip_arp.h File Reference

7.28.1 Detailed Description

Macros and definitions for the ARP module.

Author:
Adam Dunkels<adam@dunkels.com >

#include "uip.h"

This graph shows which files directly or indirectly include this file:

uip_arp.h

uip_arp.c

Data Structures

• structuip_eth_addr

Representation of a 48-bit Ethernet address.

• structuip_eth_hdr

The Ethernet header.

Defines

• #defineuip_setethaddr(eaddr)

Specifiy the Ethernet MAC address.

Functions

• void uip_arp_init(void)

Initialize the ARP module.

• void uip_arp_arpin(void)

ARP processing for incoming ARP packets.

• void uip_arp_out(void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

• void uip_arp_timer(void)

Periodic ARP processing function.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@dunkels.com

170 Contiki 1.2-devel0 File Documentation

7.29 uip/uiplib.h File Reference

7.29.1 Detailed Description

Various uIP library functions.

Author:
Adam Dunkels<adam@sics.se >

Functions

• unsigned charuiplib_ipaddrconv(char∗addrstr, unsigned char∗addr)

Convert a textual representation of an IP address to a numerical representation.

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

mailto:adam@sics.se

Index

ackerr
uip_stats,120

active
ctk_window,112

apps/program-handler.c,123
Architecture support for multi-threading,98
arg_alloc

kernel,13
arg_free

kernel,13

chkerr
uip_stats,120

conf/uip-conf.h.example,126
conf/www-conf.h.example,128
ctk

ctk_dialog_open,43
ctk_init, 43
ctk_menu_add,43
ctk_menu_remove,43
ctk_mode_get,44
ctk_mode_set,44
ctk_window_clear,44
ctk_window_close,44
ctk_window_new,44
ctk_window_redraw,45

CTK application functions,28
CTK device driver functions,46
ctk-textedit.c

ctk_textedit_add,151
ctk_textedit_eventhandler,151

ctk-textedit.h
CTK_TEXTEDIT, 152
ctk_textedit_add,153
ctk_textedit_eventhandler,153

ctk/ctk-draw.h,130
ctk/ctk.c,131
ctk/ctk.h,134
CTK_BUTTON

ctkappfunc,31
ctk_button_set_text

ctkappfunc,31
ctk_desktop_height

ctkappfunc,36
ctk_desktop_redraw

ctkappfunc,36
ctk_desktop_width

ctkappfunc,36
ctk_dialog_new

ctkappfunc,37
ctk_dialog_open

ctk, 43
ctkappfunc,37

ctk_draw_clear
ctkdraw,48

ctk_draw_clear_window
ctkdraw,48

ctk_draw_dialog
ctkdraw,49

ctk_draw_init
ctkdraw,49

ctk_draw_widget
ctkdraw,49

ctk_draw_window
ctkdraw,50

CTK_HYPERLINK
ctkappfunc,31

CTK_ICON
ctkappfunc,32

CTK_ICON_ADD
ctkappfunc,32

ctk_icon_add
ctkappfunc,37

ctk_init
ctk, 43

CTK_LABEL
ctkappfunc,32

ctk_label_set_height
ctkappfunc,33

ctk_label_set_text
ctkappfunc,33

ctk_menu,105
titlelen,106

ctk_menu_add
ctk, 43
ctkappfunc,37

ctk_menu_new
ctkappfunc,38

ctk_menu_remove
ctk, 43

172 INDEX

ctkappfunc,38
ctk_menuitem,107
ctk_menuitem_add

ctkappfunc,38
ctk_menus,108

open,108
ctk_mode_get

ctk, 44
ctkappfunc,38

ctk_mode_set
ctk, 44
ctkappfunc,38

CTK_SEPARATOR
ctkappfunc,33

ctk_signal_hyperlink_activate
ctkappfunc,41
signals,102

ctk_signal_keypress
ctkappfunc,41
signals,102

ctk_signal_menu_activate
ctkappfunc,41
signals,103

ctk_signal_pointer_button
ctkappfunc,41
signals,103

ctk_signal_pointer_move
ctkappfunc,41
signals,103

ctk_signal_widget_activate
ctkappfunc,41
signals,103

ctk_signal_widget_select
ctkappfunc,41
signals,103

ctk_signal_window_close
ctkappfunc,41
signals,103

CTK_TEXTEDIT
ctk-textedit.h,152

ctk_textedit_add
ctk-textedit.c,151
ctk-textedit.h,153

ctk_textedit_eventhandler
ctk-textedit.c,151
ctk-textedit.h,153

CTK_TEXTENTRY
ctkappfunc,33

CTK_TEXTENTRY_CLEAR
ctkappfunc,34

ctk_widget,109
CTK_WIDGET_ADD

ctkappfunc,34
ctk_widget_add

ctkappfunc,39
CTK_WIDGET_FOCUS

ctkappfunc,34
CTK_WIDGET_REDRAW

ctkappfunc,34
ctk_widget_redraw

ctkappfunc,39
CTK_WIDGET_SET_WIDTH

ctkappfunc,35
CTK_WIDGET_SET_XPOS

ctkappfunc,35
CTK_WIDGET_SET_YPOS

ctkappfunc,35
CTK_WIDGET_TYPE

ctkappfunc,35
CTK_WIDGET_XPOS

ctkappfunc,35
CTK_WIDGET_YPOS

ctkappfunc,36
ctk_window,111

active,112
inactive,112
owner,112
title, 112

ctk_window_clear
ctk, 44
ctkappfunc,39

ctk_window_close
ctk, 44
ctkappfunc,39

ctk_window_new
ctk, 44
ctkappfunc,40

ctk_window_open
ctkappfunc,40

ctk_window_redraw
ctk, 45
ctkappfunc,40

ctkappfunc
CTK_BUTTON,31
ctk_button_set_text,31
ctk_desktop_height,36
ctk_desktop_redraw,36
ctk_desktop_width,36
ctk_dialog_new,37
ctk_dialog_open,37
CTK_HYPERLINK, 31
CTK_ICON,32
CTK_ICON_ADD,32
ctk_icon_add,37
CTK_LABEL, 32
ctk_label_set_height,33
ctk_label_set_text,33
ctk_menu_add,37

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

INDEX 173

ctk_menu_new,38
ctk_menu_remove,38
ctk_menuitem_add,38
ctk_mode_get,38
ctk_mode_set,38
CTK_SEPARATOR,33
ctk_signal_hyperlink_activate,41
ctk_signal_keypress,41
ctk_signal_menu_activate,41
ctk_signal_pointer_button,41
ctk_signal_pointer_move,41
ctk_signal_widget_activate,41
ctk_signal_widget_select,41
ctk_signal_window_close,41
CTK_TEXTENTRY,33
CTK_TEXTENTRY_CLEAR,34
CTK_WIDGET_ADD,34
ctk_widget_add,39
CTK_WIDGET_FOCUS,34
CTK_WIDGET_REDRAW,34
ctk_widget_redraw,39
CTK_WIDGET_SET_WIDTH,35
CTK_WIDGET_SET_XPOS,35
CTK_WIDGET_SET_YPOS,35
CTK_WIDGET_TYPE,35
CTK_WIDGET_XPOS,35
CTK_WIDGET_YPOS,36
ctk_window_clear,39
ctk_window_close,39
ctk_window_new,40
ctk_window_open,40
ctk_window_redraw,40

ctkdraw
ctk_draw_clear,48
ctk_draw_clear_window,48
ctk_draw_dialog,49
ctk_draw_init,49
ctk_draw_widget,49
ctk_draw_window,50

drop
uip_stats,120

DSC
loader,17

dsc,113
loadaddr,113

ek/arg.c,139
ek/dsc.h,140
ek/ek.c,141
ek/loader.h,143
ek/mt.c,145
ek/mt.h,146
ek/pt-sem.h,148

ek/pt.h,149
ek_alloc_event

kernel,13
ek_event_msg

events,9
ek_event_quit

events,9
ek_exit

kernel,13
ek_init

kernel,13
ek_post

kernel,14
ek_post_synch

kernel,14
ek_process

kernel,14
ek_run

kernel,14
ek_start

kernel,15
events

ek_event_msg,9
ek_event_quit,9

fragerr
uip_stats,120

hblenerr
uip_stats,120

HTONS
uipconvfunc,76

htons
uip, 57
uipconvfunc,79

inactive
ctk_window,112

kernel
arg_alloc,13
arg_free,13
ek_alloc_event,13
ek_exit,13
ek_init,13
ek_post,14
ek_post_synch,14
ek_process,14
ek_run,14
ek_start,15

lblenerr
uip_stats,120

lib/cc.h,150
lib/ctk-textedit.c,151

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

174 INDEX

lib/ctk-textedit.h,152
lib/memb.c,154
lib/memb.h,155
lib/petsciiconv.h,156
loadaddr

dsc,113
loader

DSC,17
LOADER_LOAD, 17
LOADER_LOAD_DSC,17
LOADER_UNLOAD, 18
LOADER_UNLOAD_DSC,18

LOADER_LOAD
loader,17

LOADER_LOAD_DSC
loader,17

LOADER_UNLOAD
loader,18

LOADER_UNLOAD_DSC
loader,18

Local continuations,24

MEMB
memb,92

memb
MEMB, 92
memb_alloc,92
memb_free,92
memb_init,93
memb_ref,93

memb_alloc
memb,92

memb_free
memb,92

memb_init
memb,93

memb_ref
memb,93

Memory block management functions,91
mt

mt_exec,95
mt_exec_event,95
mt_exit,95
mt_post,95
mt_start,96
mt_wait,96
mt_yield,96

mt_exec
mt, 95

mt_exec_event
mt, 95

mt_exit
mt, 95

mt_post

mt, 95
mt_start

mt, 96
mt_wait

mt, 96
mt_yield

mt, 96
mtarch

mtarch_exec,98
mtarch_init,98
mtarch_start,99
mtarch_yield,99

mtarch_exec
mtarch,98

mtarch_init
mtarch,98

mtarch_start
mtarch,99

mtarch_yield
mtarch,99

MTP
mtp,100

mtp
MTP, 100
mtp_start,101

mtp_start
mtp,101

Multi-threading library convenience functions,
100

open
ctk_menus,108

owner
ctk_window,112

Peemptive multi-threading,94
petsciiconv.h

petsciiconv_toascii,156
petsciiconv_topetscii,156

petsciiconv_toascii
petsciiconv.h,156

petsciiconv_topetscii
petsciiconv.h,156

program-handler.c
program_handler_add,124
program_handler_init,124
program_handler_load,124
program_handler_screensaver,124

program_handler_add
program-handler.c,124

program_handler_init
program-handler.c,124

program_handler_load
program-handler.c,124

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

INDEX 175

program_handler_screensaver
program-handler.c,124

protoerr
uip_stats,120

Protothread semaphores,25
Protothreads,19
pt

PT_BEGIN,20
PT_END,20
PT_EXIT,21
PT_INIT, 21
PT_RESTART,21
PT_SPAWN,21
PT_THREAD,21
PT_WAIT_THREAD,22
PT_WAIT_UNTIL, 22
PT_WAIT_WHILE, 23

PT_BEGIN
pt, 20

PT_END
pt, 20

PT_EXIT
pt, 21

PT_INIT
pt, 21

PT_RESTART
pt, 21

PT_SEM_INIT
ptsem,26

PT_SEM_SIGNAL
ptsem,27

PT_SEM_WAIT
ptsem,27

PT_SPAWN
pt, 21

PT_THREAD
pt, 21

PT_WAIT_THREAD
pt, 22

PT_WAIT_UNTIL
pt, 22

PT_WAIT_WHILE
pt, 23

ptsem
PT_SEM_INIT,26
PT_SEM_SIGNAL,27
PT_SEM_WAIT,27

recv
uip_stats,120

resolv_conf
uipdns,83

resolv_getserver
uipdns,84

resolv_lookup
uipdns,84

resolv_query
uipdns,84

rexmit
uip_stats,120

rst
uip_stats,120

sent
uip_stats,120

signals
ctk_signal_hyperlink_activate,102
ctk_signal_keypress,102
ctk_signal_menu_activate,103
ctk_signal_pointer_button,103
ctk_signal_pointer_move,103
ctk_signal_widget_activate,103
ctk_signal_widget_select,103
ctk_signal_window_close,103

socket,114
SOCKET_BEGIN,88
SOCKET_CLOSE,88
SOCKET_CLOSE_EXIT,88
SOCKET_DATALEN,88
SOCKET_EXIT,88
SOCKET_INIT,88
SOCKET_NEWDATA,89
SOCKET_READTO,89
SOCKET_SEND,89
SOCKET_WAIT_UNTIL,89

Socket library,85
SOCKET_BEGIN

socket,88
SOCKET_CLOSE

socket,88
SOCKET_CLOSE_EXIT

socket,88
SOCKET_DATALEN

socket,88
SOCKET_EXIT

socket,88
SOCKET_INIT

socket,88
SOCKET_NEWDATA

socket,89
SOCKET_READTO

socket,89
SOCKET_SEND

socket,89
SOCKET_WAIT_UNTIL

socket,89
syndrop

uip_stats,120

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

176 INDEX

synrst
uip_stats,121

System events,9
System signals,102

The Contiki event kernel,11
The Contiki program loader,16
The CTK graphical user interface.,42
The uIP TCP/IP stack,51
title

ctk_window,112
titlelen

ctk_menu,106
typeerr

uip_stats,121

uip
htons,57
uip_appdata,59
uip_buf,59
uip_connect,57
uip_init, 58
uip_listen,58
uip_stat,59
uip_udp_new,58
uip_unlisten,59

uIP Address Resolution Protocol,80
uIP application functions,68
uIP configuration functions,61
uIP conversion functions,75
uIP device driver functions,64
uIP hostname resolver functions,83
uIP initialization functions,63
uIP TCP throughput booster hack,82
uip-conf.h.example

UIP_CONF_BUFFER_SIZE,126
UIP_CONF_BYTE_ORDER,126
UIP_CONF_MAX_CONNECTIONS,126
UIP_CONF_MAX_LISTENPORTS,127
UIP_CONF_PINGADDRCONF,127

uip/resolv.c,157
uip/resolv.h,158
uip/socket.h,159
uip/uip-split.h,161
uip/uip.c,162
uip/uip.h,163
uip/uip_arp.c,168
uip/uip_arp.h,169
uip/uiplib.h,170
uip_abort

uipappfunc,69
uip_aborted

uipappfunc,69
uip_acked

uipappfunc,70
uip_appdata

uip, 59
uip_arp_arpin

uiparp,81
uip_arp_out

uiparp,81
uip_arp_timer

uiparp,81
uip_buf

uip, 59
uipdevfunc,66

uip_close
uipappfunc,70

uip_closed
uipappfunc,70

UIP_CONF_BUFFER_SIZE
uip-conf.h.example,126

UIP_CONF_BYTE_ORDER
uip-conf.h.example,126

UIP_CONF_MAX_CONNECTIONS
uip-conf.h.example,126

UIP_CONF_MAX_LISTENPORTS
uip-conf.h.example,127

UIP_CONF_PINGADDRCONF
uip-conf.h.example,127

uip_conn,115
uip_connect

uip, 57
uipappfunc,73

uip_connected
uipappfunc,70

uip_datalen
uipappfunc,70

uip_eth_addr,117
uip_eth_hdr,118
uip_getdraddr

uipconffunc,61
uip_gethostaddr

uipconffunc,61
uip_getnetmask

uipconffunc,61
uip_init

uip, 58
uipinit, 63

uip_input
uipdevfunc,64

uip_ipaddr
uipconvfunc,76

uip_ipaddr1
uipconvfunc,76

uip_ipaddr2
uipconvfunc,76

uip_ipaddr3

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

INDEX 177

uipconvfunc,76
uip_ipaddr4

uipconvfunc,77
uip_ipaddr_cmp

uipconvfunc,77
uip_ipaddr_copy

uipconvfunc,77
uip_ipaddr_mask

uipconvfunc,78
uip_ipaddr_maskcmp

uipconvfunc,78
uip_listen

uip, 58
uipappfunc,73

uip_mss
uipappfunc,70

uip_newdata
uipappfunc,70

uip_periodic
uipdevfunc,65

uip_periodic_conn
uipdevfunc,65

uip_poll
uipappfunc,70

uip_restart
uipappfunc,71

uip_rexmit
uipappfunc,71

uip_send
uipappfunc,71

uip_setdraddr
uipconffunc,62

uip_setethaddr
uipconffunc,62

uip_sethostaddr
uipconffunc,62

uip_setnetmask
uipconffunc,62

uip_split_output
uipsplit,82

uip_stat
uip, 59

uip_stats,119
ackerr,120
chkerr,120
drop,120
fragerr,120
hblenerr,120
lblenerr,120
protoerr,120
recv,120
rexmit,120
rst,120
sent,120

syndrop,120
synrst,121
typeerr,121
vhlerr,121

uip_stop
uipappfunc,71

uip_timedout
uipappfunc,71

uip_udp_bind
uipappfunc,72

uip_udp_conn,122
uip_udp_new

uip, 58
uipappfunc,73

uip_udp_periodic
uipdevfunc,66

uip_udp_periodic_conn
uipdevfunc,66

uip_udp_remove
uipappfunc,72

uip_udp_send
uipappfunc,72

uip_udpconnection
uipappfunc,72

uip_unlisten
uip, 59
uipappfunc,74

uip_urgdatalen
uipappfunc,72

uipappfunc
uip_abort,69
uip_aborted,69
uip_acked,70
uip_close,70
uip_closed,70
uip_connect,73
uip_connected,70
uip_datalen,70
uip_listen,73
uip_mss,70
uip_newdata,70
uip_poll,70
uip_restart,71
uip_rexmit,71
uip_send,71
uip_stop,71
uip_timedout,71
uip_udp_bind,72
uip_udp_new,73
uip_udp_remove,72
uip_udp_send,72
uip_udpconnection,72
uip_unlisten,74
uip_urgdatalen,72

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

178 INDEX

Uiparch,104
uiparp

uip_arp_arpin,81
uip_arp_out,81
uip_arp_timer,81

uipconffunc
uip_getdraddr,61
uip_gethostaddr,61
uip_getnetmask,61
uip_setdraddr,62
uip_setethaddr,62
uip_sethostaddr,62
uip_setnetmask,62

uipconvfunc
HTONS,76
htons,79
uip_ipaddr,76
uip_ipaddr1,76
uip_ipaddr2,76
uip_ipaddr3,76
uip_ipaddr4,77
uip_ipaddr_cmp,77
uip_ipaddr_copy,77
uip_ipaddr_mask,78
uip_ipaddr_maskcmp,78
uiplib_ipaddrconv,79

uipdevfunc
uip_buf,66
uip_input,64
uip_periodic,65
uip_periodic_conn,65
uip_udp_periodic,66
uip_udp_periodic_conn,66

uipdns
resolv_conf,83
resolv_getserver,84
resolv_lookup,84
resolv_query,84

uipinit
uip_init, 63

uiplib_ipaddrconv
uipconvfunc,79

uipsplit
uip_split_output,82

vhlerr
uip_stats,121

www-conf.h.example
WWW_CONF_MAX_-

NUMPAGEWIDGETS,129
WWW_CONF_MAX_NUMPAGEWIDGETS

www-conf.h.example,129

Generated on Tue Sep 14 01:03:53 2004 for Contiki 1.2-devel0 by Doxygen

	The Contiki Operating System
	Contiki 1.2-devel0 Module Index
	Contiki 1.2-devel0 Modules

	Contiki 1.2-devel0 Data Structure Index
	Contiki 1.2-devel0 Data Structures

	Contiki 1.2-devel0 File Index
	Contiki 1.2-devel0 File List

	Contiki 1.2-devel0 Module Documentation
	System events
	The Contiki event kernel
	The Contiki program loader
	Protothreads
	Local continuations
	Protothread semaphores
	CTK application functions
	The CTK graphical user interface.
	CTK device driver functions
	The uIP TCP/IP stack
	uIP configuration functions
	uIP initialization functions
	uIP device driver functions
	uIP application functions
	uIP conversion functions
	uIP Address Resolution Protocol
	uIP TCP throughput booster hack
	uIP hostname resolver functions
	Socket library
	Memory block management functions
	Peemptive multi-threading
	Architecture support for multi-threading
	Multi-threading library convenience functions
	System signals
	Uiparch

	Contiki 1.2-devel0 Data Structure Documentation
	ctk_menu Struct Reference
	ctk_menuitem Struct Reference
	ctk_menus Struct Reference
	ctk_widget Struct Reference
	ctk_window Struct Reference
	dsc Struct Reference
	socket Struct Reference
	uip_conn Struct Reference
	uip_eth_addr Struct Reference
	uip_eth_hdr Struct Reference
	uip_stats Struct Reference
	uip_udp_conn Struct Reference

	Contiki 1.2-devel0 File Documentation
	apps/program-handler.c File Reference
	conf/uip-conf.h.example File Reference
	conf/www-conf.h.example File Reference
	ctk/ctk-draw.h File Reference
	ctk/ctk.c File Reference
	ctk/ctk.h File Reference
	ek/arg.c File Reference
	ek/dsc.h File Reference
	ek/ek.c File Reference
	ek/loader.h File Reference
	ek/mt.c File Reference
	ek/mt.h File Reference
	ek/pt-sem.h File Reference
	ek/pt.h File Reference
	lib/cc.h File Reference
	lib/ctk-textedit.c File Reference
	lib/ctk-textedit.h File Reference
	lib/memb.c File Reference
	lib/memb.h File Reference
	lib/petsciiconv.h File Reference
	uip/resolv.c File Reference
	uip/resolv.h File Reference
	uip/socket.h File Reference
	uip/uip-split.h File Reference
	uip/uip.c File Reference
	uip/uip.h File Reference
	uip/uip_arp.c File Reference
	uip/uip_arp.h File Reference
	uip/uiplib.h File Reference

