
Everything You Have Always Wanted to Know
about the Playstation

But Were Afraid to Ask.

Version 1.1
Compiled \ Edited By

Joshua Walker

Table of Contents
1. Introduction
2. History
3. The R3000A

• Overview
• The R3000A instruction set
• R3000A opcode encoding

4. Memory
• Memory Map
• Virtual Memory
• The System Control Coprocessor (Cop0)
• Exception Handling
• Breakpoint management
• DMA

5. Video
• Overview
• The Graphics Processing Unit (GPU)
• The Graphics Transformation Engine (GTE)
• The Motion Decoder (MDEC)

6. Sound
• The Sound Processing Unit (SPU)

7. CD-ROM
8. Root Counters
9. Controllers
10. Memory Cards
11. Serial port I/O
12. Parallel port I/O

Appendices
A. Number Systems
B. BIOS functions
C. GPU command listing
D. Glossary of terms
E. Works cited – Bibliography

Introduction
This project to document the Playstation stated about a year ago. It started with the utter disgust I had for

Sony of America after suing Bleem over the PSX emulation technology. I saw the ugliness of a huge multinational
company try to destroy two guys who had a good idea and even tried to share it with them. It made me sick. I wanted
to do something to help, but alas I had no money, (I still don't) but I did buy a Bleem CD to support them.

I decided to start this little project. Partially to prove to Sony, but mostly to prove to myself, that coming up
with the data to create you own emulator was not that hard. I also wanted to show that behind that gray box that so
many people hold dear. It's just a computer with no keyboard, that plugs into your TV. It's one thing to think that you
were spending $250 on a new PSX, but it's another to realize that the CPU costs $5.99 from LSI.

Kind of puts thing into perspective, doesn't it.
I'm not a programmer. I've never worked for sony, and I never signed a Non-Disclosure Agreement with

them. I just took my PSX apart, found out what made it tick, and put it back together. I also scoured the web looking
for material that I could find. I never looked at any of Sony's official documentation and never took any thing you
would have to have a license to get. Such as PSY-Q. I mostly poked at emulators to see how they worked. Bleem was
only 512k at the time and was pretty easy to see how it functioned without even running it through a dissembler.
PSEmu had an awesome debugger so I can see how a PSX ran even without caelta.
 I want this documentation to be freely available. Anyone can use it. From the seasoned PSX programmer to
the lurking programmer read to make the next big emulator. If there is a discrepancy in my doc, please fix it. Tear
out parts that are wrong and correct it so it's better that what I have now. I wanted to shoot for a 75% accuracy rating.
I think I got it, but I don't know. Most of the stuff in here is hearsay and logical deductions. Much of it is merely a
guess.

Of course there is the standard disclaimer, all trademarks are of the appropriate owners and that this
documentation is not endorsed by Sony or Bleem in any way. You are, once again, free to give this away, trade it, or
do what you will. It's not mine anymore. It's everybody's. Do with it what you please. Oh, and if your PSX blows up
or melts down due to this documentation, sorry. I can't assure the validity of *any* info other that I didn't get it from
Sony's official documentation. I'm not responsible to what you do to your machine.

In closing I wish to apologize for the way this introduction was written as it's 2:00 in the morning. I have a
wedding to get to at 10:30 and I've been up for the last three days finishing the darn thing. I wish to thank everyone
who supported me. Janice, for believing in me and My girlfriend Kim who put it with the long nights in front of the
computer writing and the long days in fornt of the Playstation claming I was "doing research" while playing FF8. I
can't think of anything more to say. Have fun with this

-Joshua Walker
 4/29/2000
2:34am

84905

History
Prologue B.P. (Before PlayStation)

Before the release of the PlayStation, Sony had never held a large portion of the videogames market. It had
made a few forays into the computer side of things, most notably in its involvement with the failed MSX chip in the
early 80's, but it wasn't until the advent of CD-ROM technology that Sony could claim any market share. A joint
venture with the Dutch company Philips had yielded the CD-ROM/XA, an extension of the CD-ROM format that
combined compressed audio, and visual and computer data and allowed both to be accessed simultaneously with the
aid of extra hardware. By the late 80's, CD-ROM technology was being assimilated, albeit slowly, into the home
computer market, and Sony was right there along side it. But they wanted a bigger piece of the pie.

1988 Sony Enters The Arena

By 1988, the gaming world was firmly gripped in Nintendo's 8-bit fist. Sega had yet to make a proper
showing, and Sony, although hungry for some action, hadn't made any moves of its own.

Yet.
Sony's first foray into the gaming market came in 1988, when it embarked on a deal with Nintendo to

develop a CD-ROM drive for the Super NES, not scheduled to be released for another 18 months. This was Sony's
chance to finally get involved in the home videogame market. What better way to enter that arena than on the coat-
tails of the world's biggest gaming company?

Using the same Super Disc technology as the proposed SNES drive, Sony began development on what was
to eventually become the PlayStaion. Initially called the Super Disc, it was supposed to be able to play both SNES
cartridges and CD-ROMs, of which Sony was to be the "sole worldwide licenser," as stated in the contract. Nintendo
was now to be at the mercy of Sony, who could manufacture their own CDs, play SNES carts, and play Sony CDs.
Needless to say, Nintendo began to get worried.

1991 Multimedia Comes Home

1991 saw the commercial release of the multimedia machine in the form of Philips' CD-I, which had
initially been developed jointly by both Philips and Sony until mounting conflicts resulted in a parting of ways.
Multimedia, with the current rise of the CD-ROM, was seen as the next big thing. And although the CD-I was too
expensive for the mass market, its arrival cemented the CD-ROM as a medium for entertainment beyond the
computer.

June 1991 Treachery At The 11th Hour

I n June of 1991, at the Chicago CES (Consumer Electronics Show), Sony officially announced the Play
Station (space intentional). The Play Station would have a port to play Super Nintendo cartridges, as well as a CD-
ROM drive that would play Sony Super Discs. The machine would be able to play videogames as well as other forms
of interactive entertainment, as was considered important at the time.

Sony intended to draw on its family of companies, including Sony Music and Columbia Pictures, to develop
software. Olaf Olafsson, then chief of Sony Electronic Publishing, was seen on the set of Hook, Steven Spielberg's
new Peter Pan movie, presumably deciding how the movie could be worked into a game for the fledgling Play
Station. In Fortune magazine, Olafsson was quoted as saying "The video-game business...will be much more
interesting (than when it was cartridge based). By owning a studio, we can get involved right from the beginning,
during the writing of the movie."

By this point, Nintendo had had just about all it could take. On top of the deal signed in 1988, Sony had
also contributed the main audio chip to the cartridge-based Super NES.

The Ken Kutaragi-designed chip was a key element to the system, but was designed in such a way as to
make effective development possible only with Sony's expensive development tools. Sony had also retained all rights
to the chip, which further exaserbated Nintendo.

The day after Sony announced its plans to begin work on the Play Station, Nintendo made an announcement
of its own. Instead of confirming its alliance with Sony, as everyone expected, Nintendo announced it was working
with Philips, Sony's longtime rivals, on the SNES CD-ROM drive. Sony was understandably furious.

Because of their contract-breaking actions, Nintendo not only faced legal repercussions from Sony, but
could also experience a serious backlash from the Japanese business community. Nintendo had broken the unwritten
law that a company shouldn't turn against a reigning Japanese company in favor of a foreign one.

However, Nintendo managed to escape without a penalty. Because of their mutual involvement, it would be
in the best interests of both companies to maintain friendly relations. Sony, after all, was planning a port for SNES
carts, and Nintendo was still using the Sony audio chip.

1992 The Smoke Clears

By the end of 1992, most of the storm had blown over. Despite a deal penned between Sega, one of
Nintendo's biggest competitors, and Sony, whereby Sony would produce software for the proposed Sega Multimedia
Entertainment System, negotiations were reached with Nintendo. In October of 1992, it was announced that the two
companies' CD-ROM players would be compatible. The software licensing for the proposed 32-bit machines was
awarded to Nintendo, with Sony receiving only minimal licensing royalties. Nintendo had won this battle, but hadn't
won the war. Not by a long shot.

The first Play Station never made it out of the factories. Apparently, about 200 were produced, and some
software even made it to development. For whatever reason, whether it was because of the tough licensing deal with
Nintendo, or the predicted passing of masked ROM (cartridge-based) technology, Sony scrapped its prototype. Steve
Race, Sony Computer Entertainment Of America's (SCEA) then CEO, stated, "Since the deal with Nintendo didn't
come to fruition we decided to put games on a back burner and wait for the next category. Generally, the gaming
industry has a seven-year product life-cycle, so we bided our time until we could get in on the next cycle."

1993 The Next Cycle

After returning to the drawing boards, Sony revealed the PS-X, or PlayStation-X. Gone was the original
cartridge port, as were the plans for multimedia. Apparently, Sony had visited 3DO when Trip Hawkins was selling
his hardware and had come away unimpressed, saying it was "nothing new." The PS-X was to be a dedicated game-
machine, pure and simple. Steve Race said in Next Generation magazine, "We designed the PlayStation to be the
best game player we could possibly make. Games really are multimedia, no matter what we want to call it. The
conclusion is that the PlayStation is a multimedia machine that is positioned as the ultimate game player."

Key to Sony's battle plan was the implementation of 3D into its graphics capabilities, a move that many felt
was critical to any kind of future success. At the core of the PlayStation's 3D prowess was the R3000 processor,
operating at 33 Mhz and 30 MIPS (millions of instructions per second). While this may seem fairly average for a
RISC CPU, it's the PlayStation's supplementary custom hardware, designed by Ken Kutaragi (who had previously
designed the key audio chip for the SNES), that provides the real power. The CPU relies heavily on Kutaragi's VLSI
(very large scale integration) chip to provide the speed necessary to process complex 3D graphics quickly.

The CPU is backed up by the GPU (Graphics Processing Unit), which takes care of all the data from the
CPU and passes the results to the 1024K of dual-ported VRAM, which stores the current frame buffer and allows the
picture to be displayed on-screen. Part of this picture involves adding special effects such as transparency and fog,
something that the PlayStation excels at. This was to be the most impressive display of hardware the home gaming
world had ever seen

1994 Third Party Round Up

There was no doubt that Sony could deliver the hardware. After all, Sony was one of the world's largest
manufacturers of electronics. There was no denying though, that Sony was extremely green when it came to
videogames. And no one knew it better than Sony.

Not wanting to end up like Atari or 3DO, Sony set about rounding up third party developers, assembling an
impressive 250 developing parties in Japan alone. Sony also knew it had to gain the support of the millions of

arcade-going gamers if it was to succeed. The involvement of Namco, Konami, and Williams helped ensure Sony
would be able to compete with the arcade-savvy Sega on its own turf. Namco's Ridge Racer was the natural choice to
be the flagship launch game, and Williams' Mortal Kombat III, previously promised to Nintendo for their Ultra 64,
could be tested in the arcades using the new PS-X board.

Perhaps Sony's most controversial acquisition was the purchase of Psygnosis, a relatively unknown
European developer, for $48 million. Sony needed a strong in-house development team, and Psygnosis' Lemmings
seemed to point at good things. While the purchase confused many at the time, prompting vocal outcries from
naysayers and competitors alike, Psygnosis has since proven them all wrong. Sony Interactive Entertainment, as
Psygnosis was renamed, has been responsible for some of the PlayStation's best games, including WipeOut and
Destruction Derby.

Sony's acquisition of Psygnosis yielded another fruit as well: the development system. SN Systems, co-
owned by Andy Beveridge and Martin Day, had been publishing its development software through Psygnosis under
the PSY-Q moniker. Sony originally had been planning on using expensive, Japanese MIPS R4000-based machines
that would be connected to the prototype PS-X box. Having become accustomed to developing on the PC, Psygnosis
gave Beveridge and Day first crack at creating a PlayStation development system that would work with a standard
PC.

The two men worked through Christmas and New Year's, around the clock, eventually completing the
GNU-C compiler and the source-level debugger. Psygnosis quickly arranged a meeting for SN and Sony at the
Winter CES in Las Vegas, 1994. Fortunately, Sony liked the PSY-Q alternative and decided to work with SN
Systems on cendensing the software onto two PC-compatible cards. Thus, an afordable and, more importantly,
universally compatible PlayStation development station was born.

December 3, 1994 We Have Lift Off

On December 3, 1994, the PlayStation was finally released in Japan, one week after the Sega Saturn. The
initial retail cost was 37,000 yen, or about $387. Software available at launch included King's Field, Crime Crackers,
and Namco's Ridge Racer, the PlayStation's first certifiable killer app. It was met with long lines across Japan, and
was hailed by Sony as their most important product since the WalkMan in the late 1970's.

Also available at launch were a host of peripherals, including: a memory card to save high scores and
games; a link cable, whereby you could connect two PlayStations and two TVs and play against a friend; a mouse
with pad for PC ports; an RFU Adaptor; an S-Video Adaptor; and a Multitap Unit. Third party peripherals were also
available, including Namco's Negcon.

The look of the PlayStation was dramatically different than the Saturn, which was beige (in Japan), bulky,
and somewhat clumsy looking. In contrast, the PlayStation was slim, sleek, and gray, with a revolutionary controller
that was years ahead of the Saturn's SNES-like pad. The new PSX joypad provided unheardof control by adding two
more buttons on the shoulder, making a total of eight buttons. The two extended grips also added a new element of
control. Ken Kutaragi realized the importance of control when dealing with 3 Dimensional game worlds. "We
probably spent as much time on the joypad's development as the body of the machine. Sony's boss showed special
interest in achieving the final version so it has his seal of approval." To Sony's delight, the PlayStation sold more
than 300,000 units in the first 30 days. The Saturn claimed to have sold 400,000, but research has shown that number
to be misleading. The PSX sold through (to customers) 97% of its stock, while many Saturns were still sitting on the
shelves. These misleading numbers were to be quoted by Sega on many occasions, and continued even after the US
launch.

1995 Setting Up House

By mid-1995, Sony had set its sights firmly on the United States. Sony Computer Entertainment of America
was created and housed in Foster City, California, in the heart of Silicon Valley. Steve Race, formerly of Atari, was
appointed as president and CEO of the new branch of Sony. The accumulation of third party developers continued
apace, with over 100 licenses in the US and 270 licenses in Japan secured. Steve Race said, "We've allowed people
to come in and to play on the PlayStation - and at a much more reasonable cost than has been done in the old days
with Nintendo and Sega." Sony's development strategy had paid off, with over 700 development units having been
shipped out worldwide.

May 11, 1995 Victory At E3

The Electronic Entertainment Expo (E3) was held in Los Angeles from May 11 to 13, 1995, and was the
United State's first real look at the PlayStation. Sony made a huge impression at the show with their (rumored) $4
million booth and surprise appearance by Michael Jackson. The PSX was definitely the highlight of the show,
besting Sega's Saturn and Nintendo's laughable Virtual Boy.

The launch software was also displayed, with WipeOut and Namco's Tekken and Ridge Racer drawing the
most praise. Sony also announced the unit would not be bundled with Ridge Racer, as was previously assumed.

Overall, Sony made a very formidable showing at E3. They had already proven themselves in Japan and
were close on Sega's heels. Over the course of the next year they would overtake Sega and conquer Japan as their
own. Now they were poised to do the same in America.

September 9, 1995 You Are Not Ready

The PlayStation launched in the United States on September 9, 1995 to instant success. Although it retailed
for $299, that was still $100 less than the Sega Saturn. Over 100,000 units were already presold at launch, and 17
games were available. Stores reported sell-outs across the country, and sold out of many games and peripherals as
well, including second controllers and memory cards.

Sony's initial marketing strategy seemed to be aimed at an older audience than the traditional 8-16 year old
demographic of the past. With the tag line "U R Not E" (the "E" being red) and a rumored $40 million to spend on
launch marketing, Sony swiftly positioned itself as the market leader. To further cement their audience demographic,
Sony sponsored the 1995 MTV Music Awards.

Epilogue What A Year

By the US launch, Sony had sold over one million PlayStations in Japan alone. Since the US launch, as of late 1996,
the PlayStation has sold over 7 million units worldwide, with close to two million of those being in the US alone. In
May of 1996, Sony dropped the price of the PlayStation to $199, making it even more attractive to buy.

Like Japan, America and Europe embraced the PlayStation as their next-gen console of choice. The
demographic of PlayStation owners has fallen in years steadily from twenty-somethings to the younger age bracket
so coveted by Nintendo. In fact, many former Nintendo loyalists, tired of waiting for the Nintendo 64 to be released,
bought PlayStations and are now happier for it. With close to 200 games available by Christmas 1996, it's easy to see
why. This really is the ultimate gaming console!

The R3000A
Overview

The heart of the PSX is a slightly modified R3000A CPU from MIPS and LSI. This is a 32 bit Reduced
Instruction Set Controller (RISC) processor that clocks at 33.8688 MHz. It has an operating performance of 30
million instructions per second. In addition, it has an Internal instruction cache of 4 KB, a data cache of 1 KB and
has a bus transfer rate of 132 MB/sec. It has internally one Arithmetic/Logic unit (ALU), One shifter, and totally
lacks an FPU or floating point unit. The R3000A is configured for litle-endian byte order and defines a word as 32-
bits, a half-word, as 16-bits, and a byte as 8-bits.

The PSX has two coprocessors, cop0, the System Control coprocessor, and cop2, the GPU or Graphics
Processing Unit. These are covered later on in this document.

Instruction cache
The PSX’s R3000A contains 4 KB of instruction cache. The instruction cache is organized with a line size

of 16 bytes. This should achieve hit rate of around 80%. The cache is implemented using physical address and tags,
as opposed to virtual ones.

 Data cache

The PSX’s R3000A incorporates an on-chip data cache of 1KB, organized as a line size of 4 bytes (one
word). This also should achieve hit rates of 80% in most applications. This also is a directly mapped physical
address cache. The data cache is implemented as a write through cache, to maintain that the main memory is the
same as the internal cache. In order to minimize processor stalls due to data write operations, the bus interface unit
uses a 4–deep write buffer which captures address and data at the processor execution rate, allowing it to be retired
to main memory at a much slower rate without impacting system performance.

 32 bit architecture
The R3000A uses thirty-two 32-bit registers, a 32 bit program counter, and two 32 bit registers for

multiply/divide functions. The following table lists the registers by register number, name, and usage.

 General Purpose Registers

Register number Name Usage
R0 ZR Constant Zero
R1 AT Reserved for the assembler
R2-R3 V0-V1 Values for results and expression evaluation
R4-R7 A0-A3 Arguments
R8-R15 T0-T7 Temporaries (not preserved across call)
R16-R23 S0-S7 Saved (preserved across call)
R24-R25 T8-T9 More temporaries (not preserved across call)
R26-R27 K0-K1 Reserved for OS Kernel
R28 GP Global Pointer
R29 SP Stack Pointer
R30 FP Frame Pointer
R31 RA Return address (set by function call)

Multiply/Divide result Registers and Program counter
Name Description
HI Multiplication 64 bit high result or division remainder

LO Multiplication 64 bit low result or division quotient
PC Program Counter

Even though all general purpose registers have different names, they are all treated the same except for two.
The R0 (ZR) register is hardwired as zero. The Second exception is R31 (RA) which is used at a link register when
link or jump routines are called. These instructions are used in subroutine calls, and the subroutine return address is
placed in register R31. This register can be written to or read as a normal register in other operations.

 R3000A Instruction set
The instruction encoding is based on the MIPS architecture. The means that there are three types of

instruction encoding.

I-Type (Immediate)
op rs rt immediate

J-Type (Jump)
 op target

R-Type (Register)
op rs rt rd shamt funct

where:

op is a 6-bit operation code
rs is a five bit source register specifier
rt is a 5-bit target register or branch condition
immediate is a 16-bit immediate, or branch or address displacement
target is a 26-bit jump target address
rd is a 5-bit destination register specifier
shamt is a 5-bit shift amount
funct is a 6-bit function field

The R3000A instruction set can be divided into the following basic groups:
Load/Store instructions move data between memory and the general registers. They are all encoded as “I-

Type” instructions, and the only addressing mode implemented is base register plus signed, immediate offset. This
directly enables the use of three distinct addressing modes: register plus offset; register direct; and immediate.

Computational instructions perform arithmetic, logical, and shift operations on values in registers. They
are encoded as either “R-Type” instructions, when both source operands as well as the result are general registers,
and “I-Type”, when one of the source operands is a 16-bit immediate value. Computational instructions use a three
address format, so that operations don’t needlessly interfere with the contents of source registers.

Jump and Branch instructions change the control flow of a program. A Jump instruction can be encoded
as a “J-Type” instruction, in which case the Jump target address is a paged absolute address formed by combining
the 26-bit immediate value with four bits of the Program Counter. This form is used for subroutine calls. Alternately,
Jumps can be encoded using the “R-Type” format, in which case the target address is a 32-bit value contained in one
of the general registers. This form is typically used for returns and dispatches. Branch operations are encoded as “I-
Type” instructions. The target address is formed from a 16-bit displacement relative to the Program Counter. The
Jump and Link instructions save a return address in Register r31. These are typically used as subroutine calls, where
the subroutine return address is stored into r31 during the call operation.

Co-Processor instructions perform operations on the co-processor set. Co-Processor Loads and Stores are
always encoded as “I-Type” instructions; co-processor operational instructions have co-processor dependent formats.
In the R3000A, the System Control Co-Processor (cop0) contains registers which are used in memory management
and exception handling.

Special instructions perform a variety of tasks, including movement of data between special and general
registers, system calls, and breakpoint operations. They are always encoded as “R-Type” instructions.

 INSTRUCTION SET SUMMARY
The following table describes The assembly instructions for the R3000A. Please refer to the appendix for

more detail about opcode encoding

 Load and Store Instructions

 Instruction Format and Description
Load Byte LB rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into rt.

Load Byte Unsigned LBU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed byte and load into rt.

Load Halfword LH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into rt.

Load Halfword Unsigned LHU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed byte and load into rt.

Load Word LW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Load contents of addressed word into register rt.

Load Word Left LWL rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word left so that addressed byte is leftmost byte of a word.
Merge bytes from memory with contents of register rt and load result into register
rt.

Load Word Right LWR rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load result into register
rt.

Store Byte SB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant byte of register rt at addressed location.

Store Halfword SH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant halfword of register rt at addressed location.

Store Word SW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant word of register rt at addressed location.

Store Word Left SWL rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt right so that leftmost byte of the word is in position of
addressed byte. Store bytes containing original data into corresponding bytes at
addressed byte.

Store Word Right SWR rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt left so that rightmost byte of the word is in position of
addressed byte. Store bytes containing original data into corresponding bytes at
addressed byte.

 Computational Instructions

 ALU Immediate Operations
 Instruction Format and Description

ADD Immediate ADDI rt, rs, immediate
Add 16-bit sign-extended immediate to register rs and place 32-bit result in
register rt . Trap on two’s complement overflow.

ADD Immediate Unsigned ADDIU rt, rs, immediate

Add 16-bit sign-extended immediate to register rs and place 32-bit result in
register rt . Do not trap on overflow.

Set on Less Than Immediate SLTI rt, rs, immediate
Compare 16-bit sign-extended immediate with register rs as signed 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0.
Place result in register rt.

Set on Less Than Unsigned Immediate SLTIU rt, rs, immediate
Compare 16-bit sign-extended immediate with register rs as unsigned 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place
result in register rt. Do not trap on overflow.

AND Immediate ANDI rt, rs, immediate
Zero-extend 16-bit immediate, AND with contents of register rs and place result
in register rt.

OR Immediate ORI rt, rs, immediate
Zero-extend 16-bit immediate, OR with contents of register rs and place result in
register rt.

Exclusive OR Immediate XORI rt, rs, immediate
Zero-extend 16-bit immediate, exclusive OR with contents of register rs and
place result in register rt.

Load Upper Immediate LUI rt, immediate
Shift 16-bit immediate left 16 bits. Set least significant 16 bits of word to zeroes.
Store result in register rt.

 Three Operand Register-Type Operations
 Instruction Format and Description

Add ADD rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd. Trap on
two’s complement overflow.

ADD Unsigned ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd. Do not
trap on overflow.

Subtract SUB rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result in register rd. Trap
on two’s complement overflow.

Subtract Unsigned SUBU rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result in register rd. Do
not trap on overflow.

Set on Less Than SLT rd, rs, rt
Compare contents of register rt to register rs (as signed 32-bit integers).
If register rs is less than rt, result = 1; otherwise, result = 0.

Set on Less Than Unsigned SLTU rd, rs, rt
Compare contents of register rt to register rs (as unsigned 32-bit integers). If
register rs is less than rt, result = 1; otherwise, result = 0.

AND AND rd, rs, rt
Bit-wise AND contents of registers rs and rt and place result in register rd.

OR OR rd, rs, rt
Bit-wise OR contents of registers rs and rt and place result in register rd.

Exclusive OR XOR rd, rs, rt
Bit-wise Exclusive OR contents of registers rs and rt and place result in register
rd.

NOR NOR rd, rs, rt
Bit-wise NOR contents of registers rs and rt and place result in register rd.

 Shift Operations
 Instruction Format and Description

Shift Left Logical SLL rd, rt, shamt
Shift contents of register rt left by shamt bits, inserting zeroes into low order bits.
Place 32-bit result in register rd.

Shift Right Logical SRL rd, rt, shamt
Shift contents of register rt right by shamt bits, inserting zeroes into high order
bits. Place 32-bit result in register rd.

Shift Right Arithmetic SRA rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending the high order bits.
Place 32-bit result in register rd.

Shift Left Logical Variable SLLV rd, rt, rs

Shift contents of register rt left. Low-order 5 bits of register rs specify number of
bits to shift. Insert zeroes into low order bits of rt and place 32-bit result in
register rd.

Shift Right Logical Variable SRLV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs specify number of
bits to shift. Insert zeroes into high order bits of rt and place 32-bit result in
register rd.

Shift Right Arithmetic Variable SRAV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs specify number of
bits to shift. Sign-extend the high order bits of rt and place 32-bit result in register
rd.

 Multiply and Divide Operations
 Instruction Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as twos complement values. Place 64-bit
result in special registers HI/LO

Multiply Unsigned MULTU rs, rt
Multiply contents of registers rs and rt as unsigned values. Place 64-bit result in
special registers HI/LO

Divide DIV rs, rt
Divide contents of register rs by rt treating operands as twos complements
values. Place 32-bit quotient in special register LO, and 32-bit remainder in HI.

Divide Unsigned DIVU rs, rt
Divide contents of register rs by rt treating operands as unsigned values. Place
32-bit quotient in special register LO, and 32-bit remainder in HI.

Move From HI MFHI rd
Move contents of special register HI to register rd.

Move From LO MFLO rd
Move contents of special register LO to register rd.

Move To HI MTHI rd
Move contents of special register rd to special register HI.

Move To LO MTLO rd
Move contents of register rd to special register LO.

 Jump and Branch Instructions

 Jump Instructions
 Instruction Format and Description

Jump J target
Shift 26-bit target address left two bits, combine with high-order4 bits of PC and
jump to address with a one instruction delay.

Jump and Link JAL target
Shift 26-bit target address left two bits, combine with high-order 4 bits of PC and
jump to address with a one instruction delay. Place address of instruction
following delay slot in r31 (link register).

Jump Register JR rs
Jump to address contained in register rs with a one instruction delay.

Jump and Link Register JALR rs, rd
Jump to address contained in register rs with a one instruction delay. Place
address of instruction following delay slot in rd.

 Branch Instructions
 Instruction Format and Description

Branch Target: All Branch instruction target addresses are computed as follows:
Add address of instruction in delay slot and the 16-bit offset (shifted left two bits
and sign-extended to 32 bits). All branches occur with a delay of one instruction.

Branch on Equal BEQ rs, rt, offset
Branch to target address if register rs equal to rt

Branch on Not Equal BNE rs, rt, offset
Branch to target address if register rs not equal to rt.

Branch on Less than or Equal Zero BLEZ rs, offset
Branch to target address if register rs less than or equal to 0.

Branch on Greater Than Zero BGTZ rs, offset
Branch to target address if register rs greater than 0.

Branch on Less Than Zero BLTZ rs, offset
Branch to target address if register rs less than 0.

Branch on Greater than or Equal Zero BGEZ rs, offset
Branch to target address if register rs greater than or equal to 0.

Branch on Less Than Zero And Link BLTZAL rs, offset
Place address of instruction following delay slot in register r31 (link register).
Branch to target address if register rs less than 0.

Branch on greater than or Equal Zero And
Link

BGEZAL rs, offset
Place address of instruction following delay slot in register r31 (link register).
Branch to target address if register rs is greater than or equal to 0.

 Special Instructions
 Instruction Format and Description

System Call SYSCALL
Initiates system call trap, immediately transferring control to exception handler.
More information on the PSX SYSCALL routines are covered later on.

Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to exception handler.

More information on the PSX SYSCALL routines are covered later on.

 Co-processor Instructions
 Instruction Format and Description

Load Word to Co-processor LWCz rt, offset (base)
Sign-extend 16-bit offset and add to base to form address. Load contents of
addressed word into co-processor register rt of co-processor unit z.

Store Word from Co-processor SWCz rt, offset (base)
Sign-extend 16-bit offset and add to base to form address. Store contents of co-
processor register rt from co-processor unit z at addressed memory word.

Move To Co-processor MTCz rt, rd
Move contents of CPU register rt into co-processor register rd of co-processor
unit z.

Move from Co-processor MFCz rt,rd
Move contents of co-processor register rd from co-processor unit z to CPU
register rt.

Move Control To Co-processor CTCz rt,rd
Move contents of CPU register rt into co-processor control register rd of co-
processor unit z.

Move Control From Co-processor CFCz rt,rd
Move contents of control register rd of co-processor unit z into CPU register rt.

Move Control To Co-processor COPz cofun
Co-processor z performs an operation. The state of the R3000A is not modified
by a co-processor operation.

 System Control Co-processor (COP0) Instructions
 Instruction Format and Description
Move To CP0 MTC0 rt, rd

Store contents of CPU register rt into register rd of CP0. This follows the
convention of store operations.

Move From CP0 MFC0 rt, rd
Load CPU register rt with contents of CP0 register rd.

Read Indexed TLB Entry TLBR
Load EntryHi and EntryLo registers with TLB entry pointed at by Index register.

Write Indexed TLB Entry TLBWI
Load TLB entry pointed at by Index register with contents of EntryHi and EntryLo

registers.
Write Random TLB Entry TLBWR

Load TLB entry pointed at by Random register with contents of EntryHi and
EntryLo registers.

Probe TLB for Matching Entry TLBP
Entry Load Index register with address of TLB entry whose contents match
EntryHi and EntryLo. If no TLB entry matches, set high-order bit of Index
register.

Restore From Exception RFE
Restore previous interrupt mask and mode bits of status register into current
status bits. Restore old status bits into previous status bits.

 R3000A OPCODE ENCODING
The following shows the opcode encoding for the MIPS architecture.

 OPCODE
Bits 28...26

38…29 0 1 2 3 4 5 6 7
0 SPECIAL BCOND J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COP0 COP1 COP2 COP3 † † † †
3 † † † † † † † †
4 LB LH LWL LW LBU LHU LWR †
5 SB SH SWL SW † † SWR †
6 LWC0 LWC1 LWC2 LWC3 † † † †
7 SWC0 SWC1 SWC2 SWC3 † † † †

 SPECIAL
Bits 2…0
5…3 0 1 2 3 4 5 6 7

0 SLL † SRL SRA SLLV † SRLV SRAV
1 JR JALR † † SYSCALL BREAK † †
2 MFHI MTHI MFLO MTLO † † † †
3 MULT MULTU DIV DIVU † † † †
4 ADD ADDU SUB SUBU AND OR XOR NOR
5 † † SLT SLTU † † † †
6 † † † † † † † †
7 † † † † † † † †

 BCOND
Bits 8…16

20…19 0 1 2 3 4 5 6 7
0 BLTZ BGEZ
1
2 BLTZAL BGEZAL

 COPz
Bits 23…21

25…24 0 1 2 3 4 5 6 7
0 MF CF MT CT
1 BC † † † † † † †

Co-Processor Specific Operations

 COP0
Bits 2…0
4…3 0 1 2 3 4 5 6 7

0 TLBR TLBWI TLBWR
1 TLBP
2 RFE
3

Memory

Overview
The PSX’s memory consists of four 512k 60ns SRAM chips creating 2 megabytes of system memory. The

RAM is arranged so that the addresses at 0x00xxxxxx, 0xA0xxxxxx, 0x80xxxxxx all point to the same physical
memory. The PSX has a special coprocessor called cop0 that handles almost every aspect of memory management.
Let us first examine how the memory looks and then how it is managed.

 The PSX Memory Map

0x0000_0000-0x0000_ffff Kernel (64K)
0x0001_0000

0x001f_ffff
User Memory (1.9 Meg)

0x1f00_0000-0x1f00_ffff Parallel Port (64K)

0x1f80_0000-0x1f80_03ff Scratch Pad (1024 bytes)

0x1f80_1000-0x1f80_2fff Hardware Registers (8K)

0x8000_0000

0x801f_ffff

Kernel and User Memory Mirror (2 Meg)
Cached

0xa000_0000

0xa01f_ffff

Kernel and User Memory Mirror (2 Meg)
Uncached

0xbfc0_0000-0xbfc7_ffff BIOS (512K)

All blank areas represent the absence of memory. The mirrors are used mostly for caching and exception
handling purposes The Kernel is also mirrored in all three user memory spaces.

 Virtual Memory
The PSX uses a memory architecture known as “Virtual Memory” to help with general system memory and

cache management. In a nutshell what the PSX does is mirror the two meg of addressable space into 3 segments at
three different virtual addresses. The names of these segments are Kuseg, Kseg0, and Kseg1.

Kuseg spans from 0x0000_0000 to 0x001f_ffff. This is what you might call “real” memory. This facilitates
the kernel having direct access to user memory regions.

Kseg0 begins at virtual address 0x8000_0000 and goes to 0x801f_ffff. This segment is always translated to
a linear 2MB region of the physical address space starting at physical address 0. All references through this segment
are cacheable. When the most significant three bits of the virtual address are “100”, the virtual address resides in
kseg0. The physical address is constructed by replacing these three bits of the virtual address with the value “000”.

Kseg1 is also a linear 2MB region from 0xa000_0000 to 0xa01f_ffff pointing to the same address at
address 0. When the most significant three bits of the virtual address are “101”, the virtual address resides in kseg1.
The physical address is constructed by replacing these three bits of the virtual address with the value “000”. Unlike
kseg0, references through kseg1 are not cacheable.

Looking a little deeper into how virtual memory works, the following shows the anatomy of an R3000A
virtual address. The most significant 20 bits of the 32-bit virtual address are called the virtual page number, or VPN.
Only the three highest bits (segment number) are involved in the virtual to physical address translation.

31 0
VPN Offset

31 30 29 20 12

bits 31-29
0xx kuseg
100 kseg0
101 kseg1

The three most significant bits of the virtual address identify which virtual address segment the processor is
currently referencing; these segments have associated with them the mapping algorithm to be employed, and whether
virtual addresses in that segment may reside in the cache. Pages are mapped by substituting a 20-bit physical frame
number (PFN) for the 20-bit virtual page number field of the virtual address. This substitution is performed through
the use of the on-chip Translation Lookaside Buffer (TLB). The TLB is a fully associative memory that holds 64
entries to provide a mapping of 64 4kB pages. When a virtual reference to kuseg each TLB entry is probed to see if
it maps the corresponding VPN.

 Virtual to physical memory translation

The following table is a quick look at how virtual memory gets translated via the Translation
Lookaside Buffer. This whole subsystem of memory management is handled by Cop0.

 Cop0, The System Control Coprocessor
This Unit is actually part of the R3000A. This particular cop0 has been modified from the original R3000A

cop0 architecture with the addition of a few registers and functions. Cop0 contains 16 32-bit control registers that

control the various aspects of memory management, system interrupt (exception) management, and breakpoints.
Much of it is compatible with the normal R3000A cop0. The following is an overview of the Cop0 registers.

 Cop0 Registers
Number Mnemonic Name Read/Write Usage
0 INDX Index r/w Index to an entry in the 64-entry TLB file
1 RAND Random r Provides software with a “suggested” random TLB entry

to be written with the correct translation
2 TLBL TBL low r/w Provides the data path for operations which read, write,

or probe the TLB file (first 32 bits)
3 BPC Breakpoint PC r/w Sets the breakpoint address to break on execute
4 CTXT Context r Duplicates information in the BADV register, but

provides this information in a form that may be more
useful for a software TLB exception handler.

5 BDA Breakpoint data r/w Sets the breakpoint address for load/store operations
6 PIDMASK PID Mask r/w Process ID mask
7 DCIC Data/Counter

interrupt control
r/w Breakpoint control

8 BADV Bad Virtual
Address

r Contains the address whose reference caused an
exception.

9 BDAM Break data mask r/w Data fetch address is ANDed with this value and then
compared to the value in BDA

10 TLBH TBL high r/w Provides the data path for operations which read, write,
or probe the TLB file (second 32 bits)

11 BPCM Break point
counter mask

r/w Program counter is ANDed with this value and then
compared to the value in BPC

12 SR System status
register

r/w Contains all the major status bits

13 CAUSE Cause r Describes the most recently recognized exception
14 EPC Exception

Program Counter
r Contains the return address after an exception

15 PRID Processor ID r Cop0 type and revision level
16 ERREG ??? ? ????

Note that some of these registers will be explained later in the part on exception handling. But for now we
will return to how the Cop0 is used in memory management.

 Returning to the TLB

As stated before the TLB is a fully associative memory that holds 64 entries to provide a mapping of 64
4kB pages. Each TLB entry is 64 bits wide. This is referenced by the Index, Random, TBL high, and TBL low. It is
used to virtual to physical address mapping.

 The Index Register
The Index register is a 32-bit, read-write register, which has a 6-bit field used to index to a specific entry in

the 64-entry TLB file. The high-order bit of the register is a status bit which reflects the success or failure of a TLB
Probe (tlbp) instruction.. The Index register also specifies the TLB entry that will be affected by the TLB Read (tlbr)
and TLB Write Index (tlbwi) instructions. the following shows the format of the Index register.

31 30 1413 87 0
P 0 Index 0
1 17 6 8

P Probe failure. Set to 1 when the last TLBProbe (tlbp) instruction was unsuccessful.
Index Index to the TLB entry that will be affected by the TLBRead and TLBWrite instructions.
0 Reserved. Must be written as zero, returns zero when read.

 The Random Register
The Random register is a 32-bit read-only register. The format of the Random register is below. The six-bit

Random field indexes a Random entry in the TLB. It is basically a counter which decrements on every clock cycle,
but which is constrained to count in the range of 63 to 8. That is, software is guaranteed that the Random register will
never index into the first 8 TLB entries. These entries can be “locked” by software into the TLB file, guaranteeing
that no TLB miss exceptions will occur in operations which use those virtual address. This is useful for particularly
critical areas of the operating system.

0 Random 0
18 6 8

Random A random index (with a value from 8 to 63) to a TLB entry.
0 Reserved. Returns zero when read.

The Random register is typically used in the processing of a TLB miss exception. The Random register
provides software with a “suggested” TLB entry to be written with the correct translation; although slightly less
efficient than a Least Recently Used (LRU) algorithm, Random replacement offers substantially similar performance
while allowing dramatically simpler hardware and software management. To perform a TLB replacement, the TLB
Write Random (tlbwr) instruction is used to write the TLB entry indexed by this register. At reset, this counter is
preset to the value ‘63’. Thus, it is possible for two processors to operate in “lock-step”, even when using the
Random TLB replacement algorithm. Also, software may directly read this register, although this feature probably
has little utility outside of device testing and diagnostics.

 TBL High and TBL Low Registers
These two registers provide the data path for operations which read, write, or probe the TLB file. The

format of these registers is the same as the format of a TLB entry.

TBL High TBL Low
VPN PID 0 FPN N D V G 0
20 6 6 20 1 1 1 1 8

VPN Virtual Page Number. Bits 31..12 of virtual address.
PID Process ID field. A 6-bit field which lets multiple processes share the TLB while each process has a distinct
mapping of otherwise identical virtual page numbers.
PFN Page Frame Number. Bits 31..12 of the physical address.
N Non-cacheable. If this bit is set, the page is marked as non-cacheable
D Dirty. If this bit is set, the page is marked as "dirty" and therefore writable. This bit is actually a "write-
protect" bit that software can use to prevent alteration of data
V Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS Miss occurs.
G Global. If this bit is set, the R3000A ignores the PID match requirement for valid translation. In kseg2, the
Global bit lets the kernel access all mapped data without requiring it to save or restore PID (Process ID) values.
0 Reserved. Must be written as '0', returns '0' when read.

 Exception Handling
There are times when in is necessary to suspend a program in order to process a hardware or software

function. The exception processing capability of the R3000A is provided to assure an orderly transfer of control from
an executing program to the kernel. Exceptions may be broadly divided into two categories: they can be caused by an

instruction or instruction sequence, including an unusual condition arising during its execution; or can be caused by
external events such as interrupts. When an R3000A detects an exception, the normal sequence of instruction flow is
suspended; the processor is forced to kernel mode where it can respond to the abnormal or asynchronous event. The
table below lists the exceptions recognized by the R3000A.

 Exception Mnemonic Cause
Reset Reset Assertion of the Reset signal causes an exception

that transfers control to the special vector at virtual
address 0xbfc0_0000 (The start of the BIOS)

Bus Error IBE
DBE (Data)

Assertion of the Bus Error input during a read
operation, due to such external events as bus
timeout, backplane memory errors, invalid physical
address, or invalid access types.

Address Error AdEL (Load)
AdES (Store)

Attempt to load, fetch, or store an unaligned word;
that is, a word or halfword at an address not evenly
divisible by four or two, respectively. Also caused
by reference to a virtual address with most
significant bit set while in User Mode.

Overflow Ovf Twos complement overflow during add or subtract.
System Call Sys Execution of the SYSCALL Trap Instruction
Breakpoint Bp Execution of the break instruction
Reserved
Instruction

RI Execution of an instruction with an undefined or
reserved major operation code (bits 31:26), or a
special instruction whose minor opcode (bits 5:0) is
undefined.

Co-processor
Unusable

CpU Execution of a co-processor instruction when the
CU (Co-processor usable) bit is not set for the
target co-processor.

 TLB Miss TLBL (Load)
TLBS (Store)

A referenced TLB entry’s Valid bit isn’t set

TLB Modified Mod During a store instruction, the Valid bit is set but
the dirty bit is not set in a matching TLB entry.

Interrupt Int Assertion of one of the six hardware interrupt
inputs or setting of one of the two software
interrupt bits in the Cause register.

 Returning to the Cop0

The Cop0 controls the exception handling with the use of the Cause register, the EPC register, the Status
register, the BADV register, and the Context register. A brief description of each follows, after which the rest of the
Cop0 registers for breakpoint management will be described for the sake of completeness.

 The Cause Register
The contents of the Cause register describe the last exception. A 5-bit exception code indicates the cause of the
current exception; the remaining fields contain detailed information specific to certain exceptions. All bits in this
register, with the exception of the SW bits, are read-only.

31 0
BD 0 CE 0 IP SW 0 EXECODE 0
1 1 2 12 6 2 1 5 2

BD Branch Delay. The Branch Delay bit is set (1) if the last exception was taken while the
processor was executing in the branch delay slot. If so, then the EPC will be rolled back to point to the branch
instruction, so that it can be re-executed and the branch direction re-determined..

CE Coprocessor Error, Contains the coprocessor number if the exception occurred because of a
coprocessor instruction for a coprocessor which wasn't enabled in SR.
IP Interrupts Pending. It indicates which interrupts are pending. Regardless of which interrupts are
masked, the IP field can be used to determine which interrupts are pending.
SW Software Interrupts. The SW bits can be written to set or reset software interrupts. As long as any
of the bits are set within the SW field they will cause an interrupt if the corresponding bit is set in SR under the
interrupt mask field.
0 Reserved, Must Be Written as 0. Returns 0 when Read
EXECODE Exception Code Field. Describes the type of exception that occurred. The following table lists the
type of exception that it was.

Number Mnemonic Description
0 INT External Interrupt
1 MOD TLB Modification Exception
2 TLBL TLB miss Exception (Load or instruction fetch)
3 TLBS TLB miss exception (Store)
4 ADEL Address Error Exception (Load or instruction fetch)
5 ADES Address Error Exception (Store)
6 IBE Bus Error Exception (for Instruction Fetch)
7 DBE Bus Error Exception (for data Load or Store)
8 SYS SYSCALL Exception
9 BP Breakpoint Exception

10 RI Reserved Instruction Exception
11 CPU Co-Processor Unusable Exception
12 OVF Arithmetic Overflow Exception

13-31 - Reserved

 The EPC (Exception Program Counter) Register
The 32-bit EPC register contains the virtual address of the instruction which took the exception, from which

point processing resumes after the exception has been serviced. When the virtual address of the instruction resides in
a branch delay slot, the EPC contains the virtual address of the instruction immediately preceding the exception (that
is, the EPC points to the Branch or Jump instruction).

 BADV Register
The BADV register saves the entire bad virtual address for any addressing exception.

 Context Register
The Context register duplicates some of the information in the BADV register, but provides this information

in a form that may be more useful for a software TLB exception handler. The following illustrates the layout of the
Context register. The Context register is used to allow software to quickly determine the main memory address of the
page table entry corresponding to the bad virtual address, and allows the TLB to be updated by software very quickly
(using a nine-instruction code sequence).

PTE Base BADV 0
11 19 2

0 Reserved, read as 0 and must be written as 0
BADV Failing virtual page number (set by hardware read only derived from BADV register
PTE Base Base address of page table entry, set by the kernel

 The Status Register
The Status register contains all the major status bits; any exception puts the system in Kernel mode. All bits

in the status register, with the exception of the TS (TLB Shutdown) bit, are readable and writable; the TS bit is read-
only. Figure 5.4 shows the functionality of the various bits in the status register. The status register contains a three
level stack (current, previous, and old) of the kernel/user mode bit (KU) and the interrupt enable (IE) bit. The stack
is pushed when each exception is taken, and popped by the Restore From Exception instruction. These bits may also
be directly read or written. At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; and the value of
the TS bit is set to 0 (TS = 0) The rest of the bit fields are undefined after reset.

31 0
CU 0 RE 0 BEV TS PE CM PZ SwC IsC IntMask 0 KUo IEo KUp IEp KUc IEc
4 2 1 2 1 1 1 1 1 1 1 8 2 1 1 1 1 1 1

The various bits of the status register are defined as follows:

CU Co-processor Usability. These bits individually control user level access to co-processor operations,
including the polling of the BrCond input port and the manipulation of the System Control Co-processor (CP0). CU2
is for the GTE, CU1 is for the FPA, which is not available in the PSX.

RE Reverse Endianness. The R3000A allows the system to determine the byte ordering convention for the
Kernel mode, and the default setting for user mode, at reset time. If this bit is cleared, the endianness
defined at reset is used for the current user task. If this bit is set, then the user task will operate with the opposite byte
ordering convention from that determined at reset. This bit has no effect on kernel mode.

BEV Bootstrap Exception Vector. The value of this bit determines the locations of the exception vectors of the
processor. If BEV = 1, then the processor is in “Bootstrap” mode, and the exception vectors reside
in the BIOS ROM. If BEV = 0, then the processor is in normal mode, and the exception vectors reside in RAM.

TS TLB Shutdown. This bit reflects whether the TLB is functioning.

PE Parity Error. This field should be written with a "1" at boot time. Once initialized, this field will always be
read as "0'.

CM Cache Miss. This bit is set if a cache miss occurred while the cache was isolated. It is useful in determining
the size and operation of the internal cache subsystem.

PZ Parity Zero. This field should always be written with a "0".

SwC Swap Caches. Setting this bit causes the execution core to use the on-chip instruction cache as a data cache
and vice-versa. Resetting the bit to zero unswaps the caches. This is useful for certain operations
such as instruction cache flushing. This feature is not intended for normal operation with the caches swapped.

IsC Isolate Cache. If this bit is set, the data cache is “isolated” from main memory; that is, store operations
modify the data cache but do not cause a main memory write to occur, and load operations return the data value from
the cache whether or not a cache hit occurred. This bit is also useful in various operations such as flushing.

IM Interrupt Mask. This 8-bit field can be used to mask the hardware and software interrupts to the execution
engine (that is, not allow them to cause an exception). IM(1:0) are used to mask the software interrupts, and IM (7:2)
mask the 6 external interrupts. A value of ‘0’ disables a particular interrupt, and a ‘1’ enables it. Note that the IE bit
is a global interrupt enable; that is, if the IE is used to disable interrupts, the value of particular mask bits is
irrelevant; if IE enables interrupts, then a particular interrupt is selectively masked by this field.

KUo Kernel/User old. This is the privilege state two exceptions previously. A ‘0’ indicates kernel mode.

IEo Interrupt Enable old. This is the global interrupt enable state two exceptions previously. A ‘1’ indicates that
interrupts were enabled, subject to the IM mask.

KUp Kernel/User previous. This is the privilege state prior to the current exception A ‘0’ indicates kernel mode.

IEp Interrupt Enable previous. This is the global interrupt enable state prior to the current exception. A ‘1’
indicates that interrupts were enabled, subject to the IM mask.

KUc Kernel/User current. This is the current privilege state. A ‘0’ indicates kernel mode.

IEc Interrupt Enable current. This is the current global interrupt enable state. A ‘1’ indicates that interrupts are
enabled, subject to the IM mask.
0 Fields indicated as ‘0’ are reserved; they must be written as ‘0’, and will
return ‘0’ when read.

 PRID Register
This register is useful to software in determining which revision of the processor is executing the code. The format of
this register is illustrated below.

0 Imp Rev
16 8 8

Imp 3 CoP0 type R3000A
 7 IDT unique (3041) use REV to determine correct configuration.
Rev Revision level.

 EXCEPTION VECTOR LOCATIONS
The R3000A separates exceptions into three vector spaces. The value of each vector depends on the BEV

(Boot Exception Vector) bit of the status register, which allows two alternate sets of vectors (and thus two different
pieces of code) to be used. Typically, this is used to allow diagnostic tests to occur before the functionality of the
cache is validated; processor reset forces the value of the BEV bit to a 1.

Exception Virtual Address Physical Address
 Reset 0xbfc0_0000 0x1fc0_0000

UTLB Miss 0x8000_0000 0x0000_0000
General 0x8000_0080 0x0000_0080

Exception Vectors When BEV = 0

Exception Virtual Address Physical Address
 Reset 0xbfc0_0000 0x1fc0_0000

UTLB Miss 0xbfc0_0100 0x1fc0_0100
General 0xbfc0_0180 0x1fc0_0180

Exception Vectors When BEV =1

 Exception Priority
The following is a priority list of exceptions:

Reset At any time (highest)
AdEL Memory (Load instruction)
AdES Memory (Store instruction)
DBE Memory (Load or store)
MOD ALU (Data TLB)
TLBL ALU (DTLB Miss)

TLBS ALU (DTLB Miss)
Ovf ALU
Int ALU
Sys RD (Instruction Decode)
Bp RD (Instruction Decode)
RI RD (Instruction Decode)
CpU RD (Instruction Decode)
TLBL I-Fetch (ITLB Miss)
AdEL IVA (Instruction Virtual Address)
IBE RD (end of I-Fetch, lowest)

 Breakpoint Management
The following is a listing of the registers in Cop0 that are used for breakpoint management. These registers

are very useful for low-level debugging.

BPC
Breakpoint on execute. Sets the breakpoint address to break on execute.

BDA
Breakpoint on data access. Sets the breakpoint address for load/store operations

 DCIC
Breakpoint control. To use the Execution breakpoint, set PC. To use the Data access
breakpoint set DA and either R, W or both. Both breakpoints can be used simultaneously. When a breakpoint occurs
the PSX jumps to 0x0000_0040.

1 1 1 0 W R DA PC 1 0
1 1 1 1 1 1 1 1 1 23

W 0
1 Break on Write

R 0
1 Break on Read

DA 0 Data access breakpoint disabled
1 Data access breakpoint enabled

PC 0 Execution breakpoint disabled
1 Execution breakpoint enabled

 BDAM
Data Access breakpoint mask. Data fetch address is ANDed with this value and then compared
to the value in BDA

 BPCM
Execute breakpoint mask. Program counter is ANDed with this value and then compared to
the value in BPC.

 DMA
From time to time the PSX will need to take the CPU off the main bus in order to give a device access

directly to Memory. The devices able to take control of the bus are the CD-ROM, MDEC, GPU, SPU, and the

Parallel port. There are 7 DMA channels in all (The GPU and MDEC use two) The DMA registers reside between
0x1f80_1080 and 0x1f80_10f4. The DMA channel registers are located starting at 0x1f80_1080. The base address
for each channel is as follows

Base Address Channel Number Device
0x1f80_1080 DMA channel 0 MDECin
0x1f80_1090 DMA channel 1 MDECout
0x1f80_10a0 DMA channel 2 GPU (lists + image data)
0x1f80_10b0 DMA channel 3 CD-ROM
0x1f80_10c0 DMA channel 4 SPU
0x1f80_10d0 DMA channel 5 PIO
0x1f80_10e0 DMA channel 6 GPU OTC (reverse clear the Ordering Table)

 Each channel has three 32-bit control registers at a offset of the base address for that particular channel.
These registers are the DMA Memory Address Register (D_MADR) at the base address, DMA Block Control
Register (D_BCR)at base+4, and the DMA Channel Control Register (D_CHCR) at base+8.

In order to use DMA the appropriate channel must be enabled. This is done using the DMA Primary
Control Register (DPCR) located at 0x1f80_10f0.

 DMA Primary Control Register (DPCR) 0x1f80_10f0

DMA6 DMA5 DMA4 DMA3 DMA2 DMA1 DMA0
4 4 4 4 4 4 4 4

Each register has a 4 bit control block allocated in this register.
Bit 3 1= DMA Enabled
 2 Unknown
 1 Unknown
 0 Unknown

Bit 3 must be set for a channel to operate.

As stated above, each device has three 32-bit control registers within it’s own DMA address space. The
following describes their functions. The n represents 8,9,a,b,c,d,e for DMA channels 0,1,2,3,4,5,6 respectively.

 DMA Memory Address Register (D_MADR) 0x1f80_10n0

31 0
MADR

MADR Pointer to the virtual address the DMA will start reading from/writing to.

 DMA Block Control Register (D_BCR) 0x1f80_10n4

31 0
BA BS
16 16

BA Amount of blocks
BS Blocksize (words)

The channel will transfer BA blocks of BS words. Take care not to set the size larger than the buffer of the
corresponding unit can hold. (GPU & SPU both have a $10 word buffer). A larger blocksize, means a faster transfer.

DMA Channel Control Register (D_CHCR) 0x1f80_10n8

31 0
0 TR 0 LI CO 0 DR
7 1 13 1 1 8 1

TR 0 No DMA transfer busy.
1 Start DMA transfer/DMA transfer busy.

LR 1 Transfer linked list. (GPU only)
CO 1 Transfer continuous stream of data.
DR 1 Direction from memory

0 Direction from memory

The last register is used to control DMA interrupts. The usage is currently unknown.

 DMA Interrupt Control Register (DICR) 0x1f80_10f4

Video
 Overview

The GPU is the unit responsible for the graphical output of the PSX. It handles display and drawing of all
graphics. It has the control over an 1MB frame buffer, which at 16 bits per pixel gives you a maximum “surface” of
1024x512 resolution. It also contains a 2Kb texture cache for increased speed. The display can be set for 15-bit
color or 24-bit color.

Because the PSX also totally lacks an FPU. A second coprocessor has been added called the Geometry
Transformation Engine or GTE. The GTE is the heart of all 3d calculations on the PSX. The GTE can perform
vector and matrix operations, perspective transformation, color equations and the like. It is much faster than the CPU
on these operations. It is mounted as the second coprocessor (Cop2) and as such takes up no physical address space
in the PSX. The GTE is covered later in the document.

The Graphics Processing Unit (GPU)
As stated before the GPU is responsible for graphical output. It has at it’s disposal a 1 MB frame buffer and

registers to access it. The frame buffer it totally inaccessible to the CPU, meaning that it doesn’t reside in
addressable memory. The only way to access it is through the GPU. The GPU is able to take “commands” from the
CPU, or via DMA to place objects on the frame buffer to be displayed. Communication is handled through a
command and data port. It has a 64 byte command FIFO buffer, which can hold up to 3 commands and is connected
to a DMA channel for transfer of image data and linked command lists (channel 2) and a DMA channel for reverse
clearing an Ordering Table (channel 6).

Communication and Ordering Tables (OT).
All data regarding drawing and drawing environment are sent as packets to the GPU. Each packet tells the

GPU how and where to draw one primitive, or it sets one of the drawing environment parameters. The display
environment is set up through single word commands using the control port of the GPU.

Packets can be forwarded word by word through the data port of the GPU, or more efficiently for large
numbers of packets through DMA. A special DMA mode was created for this so large numbers of packets can be
sent and managed easily. In this mode a list of packets is sent, where each entry in the list contains a header which is
one word containing the address of the next entry and the size of the packet and the packet itself. A result of this is
that the packets do not need to be stored sequentially. This makes it possible to easily control the order in which
packets get processed. The GPU processes the packets it gets in the order they are offered. So the first entry in the
list also gets drawn first. To insert a packet into the middle of the list simply find the packet after which needs it to be
processed, replace the address in that packet with the address of the new packet, and let that point to the address that
was replaced.

To aid in finding a location in the list, the Ordering Table was invented. At first this is basically a linked list
with entries of packet size 0, so it's a list of only list entry headers, where each entry points to to the next entry. Then
as primitives are generated by your program you can then add them to the table at a certain index. Just read the
address in the table entry and replace it with the address of the new packet and store the address from the table in the
packet. When all packets are generated drawing will just require passing the address of the first list entry to the DMA
and the packets will get drawn in the order you entered the packets to the table. Packets entered at a higher table
index will get drawn after those entered at a lower table index. Packets entered at the same index will get drawn in
the order they were entered, the last one first.

In 3d drawing it's most common that you want the primitives with the highest Z value to be drawn first, so it
would be nice if the table would be drawn the other way around, so the Z value can be used as index. This is a simple
thing, just make a table of which each entry points to the previous entry, and start the DMA with the address of the
last table entry. To assist you in making such a table, a special DMA channel is available which creates it for you.

 The Frame Buffer
The frame buffer is the memory which stores all graphic data which the GPU can access and manipulate,

while drawing and displaying an image . The memory is under the GPU and cannot be accessed by the CPU directly.
It is operated solely by the GPU. The frame buffer has a size of 1 MB and is treated as a space of 1024 pixels wide

and 512 pixels high. Each "pixel" has the size of one word (16 bit). It is not treated linearly like usual memory, but is
accessed through coordinates, with an upper left corner of (0,0) and a lower right corner of (1023,511).

When data is displayed from the frame buffer, a rectangular area is read from the specified coordinate
within this memory. The size of this area can be chosen from several hardware defined types. Note that these
hardware sizes are only valid when the X and Y stop/start registers are at their default values. This display area can
be displayed in two color formats, being 15bit direct and 24bit direct. The data format of one pixel is as follows.

15-bit direct display

Pixel
M Blue Green Red
15 14 109 54 0

This means each color has a value of 0-31. The MSB of a pixel (M) is used to mask the pixel.

24-bit direct display
The GPU can also be set to 24bit mode, in which case 3 bytes form one pixel, 1 byte for each color. Data in

this mode is arranged as follows:

Pixel 0 Pixel 1 Pixel 2
G0 R0 R1 B0 B1 G1

15 87 015 87 015 87 0

Thus 2 display pixels are encoded in 3 frame buffer pixels. They are displayed as follows: [R0,G0,B0]
[R1,G1,B1].

Primitives.
A basic figure which the GPU can draw is called a primitive, and it can draw the following:

• Polygon
 The GPU can draw 3 point and 4 point polygons. Each point of the polygon specifies a point in the frame
buffer. The polygon can be also be gourad shaded. The correct order of vertices for 4 point polygons is as follows

1 2

3 4

A 4 point polygon is processed internally as two 3 point polygons. also note when drawing a polygon the
GPU will not draw the right most and bottom edge. So a (0,0)-(32,32) rectangle will actually be drawn as (0,0)-
(31,31). Make sure adjoining polygons have the same coordinates if you want them to touch each other!.

• Polygon with texture
A primitive of this type is the same as above, except that a texture is applied. Each vertex of the polygon maps

to a point on a texture page in the frame buffer. The polygon can be gourad shaded.
 Because a 4 point polygon is processed internally as two 3 point polygons, texture mapping is also done

independently for both halves. This has some annoying consequences.

• Rectangle
A rectangle is defined by the location of the top left corner and its width and height. Width and height can be either
free, 8*8 or 16*16. It's drawn much faster than a polygon, but gourad shading is not possible.

• Sprite
A sprite is a textured rectangle, defined as a rectangle with coordinates on a texture page. Like the rectangle is

drawn much faster than the polygon equivalent. No gourad shading possible. Even though the primitive is called a
sprite, it has nothing in common with the traditional sprite, other than that it's a rectangular piece of graphics. Unlike
the PSX sprite, the traditional sprite is NOT drawn to the bitmap, but gets sent to the screen instead of the actual
graphics data at that location at display time.

• Line
A line is a straight line between 2 specified points. The line can be gourad shaded. A special form is the polyline, for
which an arbitrary number of points can be specified.

• Dot
The dot primitive draws one pixel at the specified coordinate and in the specified color. It is actually a special form
of rectangle, with a size of 1x1.

 Textures
A texture is an image put on a polygon or sprite. It is necessary to prepare the data beforehand in the frame

buffer. This image is called a texture pattern. The texture pattern is located on a texture page which has a standard
size and is located somewhere in the frame buffer, see below. The data of a texture can be stored in 3 different
modes

• 15-bit direct mode

I0
S Blue Green Red
15 14 109 54 0

This means each color has a value of 0-31. The MSB of a pixel (S) is used to specify it the pixel is semi
transparent or not. More on that later.

• 8bit CLUT mode,
 Each pixel is defined by 8bits and the value of the pixel is converted to a 15-bit color using the CLUT(color
lookup table) much like standard VGA pictures. So in effect you have 256 colors which are in 15bit precision.

I1 I0
15 87 0

 I0 is the index to the CLUT for the left pixel, I1 for the right.

• 4-bit CLUT mode,
 Same as above except that only 16 colors can be used. Data is arranged as follows:

I3 I2 I1 I0
15 1211 87 43 0

I0 is first drawn to the left to I3 to the right.

• Texture Pages
Texture pages have a unit size of 256*256 pixels, regardless of color mode. This means that in the frame buffer

they will be 64 pixels wide for 4bit CLUT, 128 pixels wide for 8bit CLUT and 256 pixels wide for 15-bit direct. The
pixels are addressed with coordinates relative to the location of the texture page, not the frame buffer. So the top left

texture coordinate on a texture page is (0,0) and the bottom right one is (255,255). The pages can be located in the
frame buffer on X multiples of 64 and Y multiples of 256. More than one texture page can be set up, but each
primitive can only contain texture from one page.

• Texture Windows
The area within a texture window is repeated throughout the texture page. The data is not actually stored all over

the texture page but the GPU reads the repeated patterns as if they were there. The X and Y
and H and W must be multiples of 8.

• CLUT (Color Lookup Table)
The CLUT is a the table where the colors are stored for the image data in the CLUT modes. The pixels of those
images are used as indexes to this table. The CLUT is arranged in the frame buffer as a 256x1 image for the 8bit
CLUT mode, and a 16x1 image for the 4bit CLUT mode. Each pixel as a 16 bit value, the first 15 used of a 15 bit
color, and the 16th used for semi-transparency. The CLUT data can be arranged in the frame buffer at X multiples of
16 (X=0,16,32,48,etc) and anywhere in the Y range of 0-511. More than one CLUT can be prepared but only one
can be used for each
primitive.

• Texture Caching
If polygons with texture are displayed, the GPU needs to read these from the frame buffer. This slows down the

drawing process, and as a result the number of polygons that can be drawn in a given time span. To speed up this
process the GPU is equipped with a texture cache, so a given piece of texture needs not to be read multiple times in
succession. The texture cache size depends on the color mode used for the textures. In 4-bit CLUT mode it has a size
of 64x64, in 8-bit CLUT it's 32x64 and in 15-bit direct is 32x32. A general speed up can be achieved by setting up
textures according to these sizes. For further speed gain a more precise knowledge of how the cache works is
necessary.

Cache blocks
The texture page is divided into non-overlapping cache blocks, each of a unit size according to color mode.

These cache blocks are tiled within the texture page.

Cache
Block

0 1 2…

- Cache entries
Each cache block is divided into 256 cache entries, which are numbered sequentially, and are 8 bytes wide.

So a cache entry holds 16 4-bit CLUT pixels 8 8-bit CULT pixels, or 4 15bitdirect pixels.

4-bit and 8-bit CLUT
0 1 2 3
4 5 6 7
8 9 …
c

15-bit direct
0 1 2 3 4 5 6 7
8 9 a b c d e f

10 11 … … …
18 …

The cache can hold only one cache entry by the same number, so if for example, a
piece of texture spans multiple cache blocks and it has data on entry 9 of block 1, but also on entry 9 of block 2,
these cannot be in the cache at once.

Rendering options
There are 3 modes which affect the way the GPU renders the primitives to the frame buffer.

• Semi Transparency
When semi transparency is set for a pixel, the GPU first reads the pixel it wants to write to, and then calculates

the color it will write from the 2 pixels according to the semi-transparency mode selected. Processing speed is lower
in this mode because additional reading and calculating are necessary. There are 4 semi-transparency modes in the
GPU.

B= the pixel read from the image in the frame buffer, F = the half transparent pixel

• 1.0 x B + 0.5 x F
• 1.0 x B + 1.0 x F
• 1.0 x B - 1.0 x F
• 1.0 x B + 0.25 x F

A new semi transparency mode can be set for each primitive. For primitives without texture semi- transparency
can be selected. For primitives with texture semi transparency is stored in the MSB of each pixel, so some pixels can
be set to STP others can be drawn opaque. For the CLUT modes the STP bit is obtained from the CLUT. So if a
color index points to a color in the CLUT with the MSB set, it will be drawn semi transparent.

When the color is black(BGR=0), STP is processed different from when it's not black (BGR<>0). The table below
shows the differences:

Transparency Processing (bit 1 of command packet)
 BGR STP off on
0,0,0 0 Transparent Transparent
0,0,0 1 Non-transparent Non-transparent
x,x,x 0 Non-transparent Non-transparent
x,x,x 1 Non-transparent Transparent

• Shading
The GPU has a shading function, which will scale the color of a primitive to a specified brightness. There are 2

shading modes: Flat shading, and gourad shading. Flat shading is the mode in which one brightness value is specified
for the entire primitive. In gourad shading mode, a different brightness value can be given for each vertex of a
primitive, and the brightness between these points is automatically interpolated.

• Mask
The mask function will prevent to GPU to write to specific pixels when drawing in the frame buffer. This means

that when the GPU is drawing a primitive to a masked area, it will first read the pixel at the coordinate it wants to
write to, check if it's masking bit is set, and if so refrain from writing to that particular pixel. The masking bit is the
MSB of the pixel, just like the STP bit. To set this masking bit, the GPU provides a mask out mode, which will set
the MSB of any pixel it writes. If both mask out and mask evaluation are on, the GPU will not draw to pixels with set
MSB's, and will draw pixels with set MSB's to the others, these in turn becoming masked pixels.

 Drawing Environment
The drawing environment specifies all global parameters the GPU needs for drawing primitives.

• Drawing offset.
 This locates the top left corner of the drawing area. Coordinates of primitives originate to this point. So if
the drawing offset is (0,240) and a vertex of a polygon is located at (16,20) it will be drawn to the frame buffer at
(0+16,240+20).

• Drawing clip area
 This specifies the maximum range the GPU draws primitives to. So in effect it specifies the top left and
bottom right corner of the drawing area.

• Dither enable
 When dither is enabled the GPU will dither areas during shading. It will process internally in 24 bit and
dither the colors when converting back to 15-bit. When it is off, the lower 3 bits of each color simply get discarded.

• Draw to display enable.
 This will enable/disable any drawing to the area that is currently displayed.

• Mask enable
 When turned on any pixel drawn to the frame buffer by the GPU will have a set masking bit. (= set MSB)

• Mask judgement enable
 Specifies if the mask data from the frame buffer is evaluated at the time of drawing.

Display Environment.
This contains all information about the display, and the area displayed.

• Display area in frame buffer
 This specifies the resolution of the display. The size can be set as follows:

Width: 256,320,384,512 or 640 pixels
Height: 240 or 480 pixels

 These sizes are only an indication on how many pixels will be displayed using a default start end. These
settings only specify the resolution of the display.

• Display start/end.
 Specifies where the display area is positioned on the screen, and how much data gets sent to the screen. The
screen sizes of the display area are valid only if the horizontal/vertical start/end values are default. By changing these
you can get bigger/smaller display screens. On most TV's there is some black around the edge, which can be utilized
by setting the start of the screen earlier and the end later. The size of the pixels is NOT changed with these settings,
the GPU simply sends more data to the screen. Some monitors/TVs have a smaller display area and the extended size
might not be visible on those sets.(Mine is capable of about 330 pixels horizontal, and 272 vertical in 320*240
mode)

• Interlace enable
 When enabled the GPU will display the even and odd lines of the display area alternately. It is necessary to set

this when using 480 lines as the number of scan lines on a TV screen are not sufficient to display 480 lines.

• 15bit/24bit direct display
 Switches between 15bit/24bit display mode.

• Video mode
 Selects which video mode to use, which are either PAL or NTSC.

 GPU operation
• GPU control registers.

There are 2 32 bit IO ports for the GPU, which are at 0x1f80_1810 for GPU Data and 0x1f80_1814 for GPU
control/Status. The data register is used to exchange data with the GPU and the control/status register gives the
status of the GPU when read, and sets the control bits when written to.

 Control/Status Register 0x1f80_1814

Status (Read) High
31 16

lcf dma com img busy ? ? den isinter isrgb24 Video Height Width0 Width1
1 2 1 1 1 1 1 1 1 1 1 1 2 1

 W0 W1
Width 00 0 256 pixels

01 0 320
10 0 512
11 0 640
00 1 384

Height 0 240 pixels
1 480

Video 0 NTSC
1 PAL

isrgb24 0 15-bit direct mode
1 24-bit direct mode

isinter 0 Interlace off
1 Interlace on

den 0 Display enabled
1 Display disabled

busy 0 GPU is Busy (i.e. drawing primitives)
1 GPU is Idle

img 0 Not Ready to send image (packet $c0)
1 Ready

com 0 Not Ready to receive commands
1 Ready

dma 00 DMA off, communication through GP0
01 Unknown
10 DMA CPU -> GPU
11 DMA GPU -> CPU

lcf 0 Drawing even lines in interlace mode
1 Drawing uneven lines in interlace mode

Status (Read) Low
15 0
? ? ? me md dfe dtd tp abr ty tx
1 1 1 1 1 1 1 2 2 1 4

tx 0 0 Texture page X = tx*64
1 64
2 128
3 196

4 ...
ty 0 0 Texture page Y

1 256
abr 00 0.5xB+0.5 x F Semi transparent state

01 1.0xB+1.0 x F
10 1.0xB-1.0 x F
11 1.0xB+0.25 x F

tp 00 4-bit CLUT Texture page color mode
 01 8-bit CLUT

10 15-bit
dtd 0 Dither off
 1 Dither on
dfe 0 off Draw to display area prohibited

1 on Draw to display area allowed
md 0 off Do not apply mask bit to drawn pixels

1 on Apply mask bit to drawn pixels
me 0 off Draw over pixel with mask set

1 on No drawing to pixels with set mask bit.

Control (Write)
A control command is composed of one word as follows:

command parameter
31 1615 0

The composition of the parameter is different for each command.

• Reset GPU
command 0x00
parameter 0x000000
Description Resets the GPU. Also turns off the screen. (sets status to $14802000)

• Reset Command Buffer
command 0x01
parameter 0x000000
Description Resets the command buffer.

• Reset IRQ
command 0x02
parameter 0x000000
Description Resets the IRQ.

• Display Enable
command 0x03
parameter 0x000000 Display disable

0x000001 Display enable
description Turns on/off display. Note that a turned off screen still gives the flicker of NTSC on a pal screen if
NTSC mode is selected..

• DMA setup.
command 0x04
parameter 0x000000 DMA disabled

0x000001 Unknown DMA function
0x000002 DMA CPU to GPU
0x000003 DMA GPU to CPU

description Sets DMA direction.

• Start of display area
command 0x05
parameter bit 0x00-0x09 X (0-1023)
 bit 0x0a-0x12 Y (0-512) = Y<<10 + X
description Locates the top left corner of the display area.

• Horizontal Display range
command 0x06
parameter bit 0x00-0x0b X1 (0x1f4-0xCDA)

bit 0x0c-0x17 X2 = X1+X2<<12
description Specifies the horizontal range within which the display area is displayed. The display is relative to
the display start, so X coordinate 0 will be at the value in X1. The display end is not relative to the display start. The
number of pixels that get sent to the screen in 320 mode are (X2-X1)/8. How many actually are visible depends on
your TV/monitor. (normally $260-$c56)

• Vertical Display range
command 0x07
parameter bit 0x00-0x09 Y1

bit 0x0a-0x14 Y2 = Y1+Y2<<10
description Specifies the vertical range within which the display area is displayed. The display is relative to the
display start, so Y coordinate 0 will be at the value in Y1. The display end is not relative to the display start. The
number of pixels that get sent to the display are Y2-Y1, in 240 mode. (Not sure about the default values, should be
something like NTSC $010-$100, PAL $023-$123)

• Display mode
command 0x08
parameter bit 0x00-0x01 Width 0

bit 0x02 Height
bit 0x03 Video mode: See above
bit 0x04 Isrgb24
bit 0x05 Isinter
bit 0x06 Width1
bit 0x07 Reverse flag

description Sets the display mode.

• Unknown
command 0x09
parameter 0x000001 ??
description Used with value $000001

• GPU Info
command 0x10
parameter 0x000000

0x000001
 0x000002
 0x000003 Draw area top left
 0x000004 Draw area bottom right

0x000005 Draw offset
0x000006

0x000007 GPU Type, should return 2 for a standard GPU description. Returns requested
info. Read result from GP0. 0,1 seem to return draw area top left also 6 seems to return draw offset too.

• ?????
command 0x20
parameter ???????
description Used with value $000504

Command Packets, Data Register
Primitive command packets use an 8 bit command value which is present in all packets. They contain a 3 bit

type block and a 5 bit option block of which the meaning of the bits depend on the type. layout is as follows:

 Type
000 GPU command
001 Polygon primitive
010 Line primitive
011 Sprite primitive
100 Transfer command
111 Environment command

Configuration of the option blocks for the primitives is as follows:

 Polygon
 Type Option

0 0 1 IIP VTX TME ABE TGE
7 6 5 4 3 2 1 0

 Line
 Type Option

0 1 0 IIP PLL 0 ABE 0
7 6 5 4 3 2 1 0

 Sprite
 Type Option

1 0 0 Size TME ABE 0
7 6 5 4 3 2 1 0

IIP 0 Flat Shading
1 Gourad Shading

VTX 0 3 vertex polygon
1 4 vertex polygon

TME 0 Texture mapping off
1 Texture mapping on

ABE 0 Semi transparency off
1 Semi transparency on

TGE 0 Brightness calculation at time of texture mapping on
1 off. (draw texture as is)

Size 00 Free size (Specified by W/H)
01 1 x 1

10 8 x 8
11 16 x 16

PLL 0 Single line (2 vertices)
1 Polyline (n vertices)

• Color information
Color information is forwarded as 24-bit data. It is parsed to 15-bit by the GPU.

Layout as follows:

Blue Green Red
23 1615 87 0

• Shading information.
For textured primitive shading data is forwarded by this packet. Layout is the same as for color data, the RGB

values controlling the brightness of the individual colors ($00-$7f). A value of $80 in a color will take the former
value as data.

Blue Green Red
23 1615 87 0

*Texture Page information
The Data is 16 bit wide, layout is as follows:

0 TP ABR TY TX
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TX 0-0xf X*64 t texture page x coordinate
TY 0 0 texture page y coordinate

1 256
ABR 0 0.5xB+0.5 x F Semi transparency mode

1 1.0xB+1.0 x F
2 1.0xB-1.0 x F
3 1.0xB+0.25 x F

TP 0 4-bit CLUT
1 8-bit CLUT
2 15-bit direct

• CLUT-ID
Specifies the location of the CLUT data. Data is 16-bits.

Y coordinate 0-511 X coordinate X/16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Abbreviations in packet list

BGR Color/Shading info see above.
xn,yn 16 bit values of X and Y in frame buffer.
un,vn 8 bit values of X and Y in texture page
tpage texture page information packet, see above

clut CULT ID, see above.

 Packet list
The packets sent to the GPU are processed as a group of data, each one word wide. The data must be

written to the GPU data register ($1f801810) sequentially. Once all data has been received, the GPU
starts operation.

Overview of packet commands:
• Primitive drawing packets
 0x20 monochrome 3 point polygon
 0x24 textured 3 point polygon
 0x28 monochrome 4 point polygon
 0x2c textured 4 point polygon
 0x30 gradated 3 point polygon
 0x34 gradated textured 3 point polygon
 0x38 gradated 4 point polygon
 0x3c gradated textured 4 point polygon
 0x40 monochrome line
 0x48 monochrome polyline
 0x50 gradated line
 0x58 gradated line polyline
 0x60 rectangle
 0x64 sprite
 0x68 dot
 0x70 8*8 rectangle
 0x74 8*8 sprite
 0x78 16*16 rectangle
 0x7c 16*16 sprite
• GPU command & Transfer packets
 0x01 clear cache
 0x02 frame buffer rectangle draw
 0x80 move image in frame buffer
 0xa0 send image to frame buffer
 0xc0 copy image from frame buffer
• Draw mode/environment setting packets
 0xe1 draw mode setting
 0xe2 texture window setting
 0xe3 set drawing area top left
 0xe4 set drawing area bottom right
 0xe5 drawing offset
 0xe6 mask setting

Packet Descriptions
• Primitive Packets

0x20 monochrome 3 point polygon

Order 31 2423 1615 87 0
1 0x20 BGR Command + Color
2 y0 x0 Vertex 0
3 y1 x1 Vertex 1
4 y2 x2 Vertex 2

0x24 textured 3 point polygon

Order 31 2423 1615 87 0
1 0x24 BGR Command + Color
2 y0 x0 Vertex 0
3 CLUT v0 u0 CULT ID + texture coordinates vertex 0
4 y1 x1 Vertex 1
5 tpage v1 u1 Texture page + texture coordinates vertex 1
6 y2 x2 Vertex 1
7 v2 u2 Texture coordinates vertex 2

0x28 monochrome 4 point polygon

Order 31 2423 1615 87 0
1 0x28 BGR Command + Color
2 y0 x0 Vertex 0
3 y1 x1 Vertex 1
4 y2 x2 Vertex 2
5 y3 y3 Vertex 3

0x2c textured 3 point polygon

Order 31 2423 1615 87 0
1 0x2c BGR Command + Color Vertex 0
2 y0 x0 Vertex 0
3 CLUT v0 u0 CULT ID + texture coordinates vertex 0
4 y1 x1 Vertex 1
5 tpage v1 u1 Texture page + texture coordinates vertex 1
6 y2 x2 Vertex 2
7 v2 u2 Texture coordinates vertex 2

8 y3 x3 Vertex 3
9 v3 v3 Texture coordinates vertex 3

0x30 gradated 3 point polygon

Order 31 2423 1615 87 0
1 0x30 BGR0 Command + Color Vertex 0
2 y0 x0 Vertex 0
3 BGR1 Color Vertex 1
4 y1 x1 Vertex 1
5 BGR2 Color Vertex 2
6 y2 x2 Vertex 2

0x34 shaded textured 3 point polygon

Order 31 2423 1615 87 0
1 0x34 BGR0 Command + Color Vertex 0
2 y0 x0 Vertex 0
3 CLUT v0 u0 CULT ID + texture coordinates vertex 0
4 BGR1 Color Vertex 1
5 y1 x1 Vertex 1
6 tpage v1 u1 Texture page + texture coordinates vertex 1
7 BGR2 Color vertex 2
8 y2 x2 Vertex 2
9 v2 u2 CULT ID + texture coordinates vertex 2

0x38 gradated 4 point polygon

Order 31 2423 1615 87 0
1 0x38 BGR0 Command + Color Vertex 0
2 y0 x0 Vertex 0
3 BGR1 Color Vertex 1
4 y1 x1 Vertex 1
5 BGR2 Color Vertex 2
6 y2 x2 Vertex 2
7 BGR3 Color Vertex 3
8 y3 x3 Vertex 3

0x3c shaded textured 4 point polygon

Order 31 2423 1615 87 0
1 0x3c BGR0 Command + Color Vertex 0
2 y0 x0 Vertex 0
3 CLUT v0 u0 CULT ID + texture coordinates vertex 0
4 BGR1 Color Vertex 1
5 y1 x1 Vertex 1
6 tpage v1 u1 Texture page + texture coordinates vertex 1
7 BGR2 Color vertex 2

8 y2 x2 Vertex 2
9 v2 u2 CULT ID + texture coordinates vertex 2

10 BGR3 Color vertex 3
11 y3 x3 Vertex 3
12 v3 32 CULT ID + texture coordinates vertex 3

0x40 monochrome line

Order 31 2423 1615 87 0
1 0x40 BGR Command + Color
2 y0 x0 Vertex 0
3 y1 x1 Vertex 1

0x48 single color polyline

Order 31 2423 1615 87 0
1 0x48 BGR Command + Color
2 y0 x0 Vertex 0
3 y1 x1 Vertex 1
4 y2 x2 Vertex 2
… yn xn Vertex n
… 0x55555555 Termination code

Any number of points can be entered, end with termination code.

0x50 gradated line

Order 31 2423 1615 87 0
1 0x50 BGR0 Command + Color Vertex 0
2 y0 x0 Vertex 0
3 BGR1 Color Vertex 1
4 y1 x1 Vertex 1

0x58 gradated polyline

Order 31 2423 1615 87 0
1 0x58 BGR0 Command + Color Vertex 0
2 y0 x0 Vertex 0
3 BGR1 Color Vertex 1
4 y1 x1 Vertex 1
5 BGR2 Color Vertex 2
6 y2 x2 Vertex 2
… BGRn Color Vertex n
… yn xn Vertex n
… 0x55555555 Termination code

Any number of points can be entered, end with termination code.

0x60 Rectangle

Order 31 2423 1615 87 0
1 0x60 BGR Command + Color
2 y x upper left corner location
3 h w height and width

0x64 Sprite

Order 31 2423 1615 87 0
1 0x64 BGR Command + Color
2 y x upper left corner location
3 CLUT v u CULT ID + texture coordinates page y,x
4 h w height and width

0x68 Dot

Order 31 2423 1615 87 0
1 0x68 BGR Command + Color
2 y x location

0x70 8x8 Rectangle

Order 31 2423 1615 87 0
1 0x70 BGR Command + Color
2 y x location

0x74 8x8 Sprite

Order 31 2423 1615 87 0
1 0x74 BGR Command + Color
2 y x location
3 CLUT v u CULT ID + texture coordinates page y,x

0x78 16x16 Rectangle

Order 31 2423 1615 87 0
1 0x78 BGR Command + Color
2 y x location

0x7c 16x16 Sprite

Order 31 2423 1615 87 0
1 0x74 BGR Command + Color

2 y x location
3 CLUT v u CULT ID + texture coordinates page y,x

 GPU command & Transfer packets

0x01Clear cache

Order 31 2423 1615 87 0
1 0x01 0 clear cache

0x02 frame buffer rectangle draw

Order 31 2423 1615 87 0
1 0x02 BGR Command + Color
2 y x upper left corner location
3 h w height and width

Fills the area in the frame buffer with the value in RGB. This command will draw without regard to drawing
environment settings. Coordinates are absolute frame buffer coordinates. Max width is 0x3ff, max height is 0x1ff.

0x80 Rectangle

Order 31 2423 1615 87 0
1 0x80 BGR Command + Color
2 sy sx Source coordinate.
4 dy dx Destination coordinate
5 h w height and width of transfer

Copies data within frame buffer

0x01 0xa0 send image to frame buffer

Order 31 2423 1615 87 0
1 0x01 Reset command buffer (write to GP1 or GP0)
2 0xa0 BGR Command + Color
3 y x Destination coordinate
4 h w height and width of transfer
5 pix1 pix0 image data

6..
… pixn pixn-1

Transfers data from main memory to frame buffer If the number of pixels to be sent is odd, an extra should
be sent. (32 bits per packet)

0x01 0xc0 send image to frame buffer

Order 31 2423 1615 87 0
1 0x01 Reset command buffer (write to GP1 or GP0)
2 0xc0 BGR Command + Color
3 y x Destination coordinate
4 h w height and width of transfer

5 pix1 pix0 image data
6..
… pixn pixn-1

Transfers data from frame buffer to main memory. Wait for bit 27 of the status register to be set before
reading the image data. When the number of pixels is odd, an extra pixel is read at the end.(because on packet is 32
bits)

 Draw mode/environment setting packets
Some of these packets can also be by primitive packets, in any case it is the last packet of either that the

GPU received that is active. so if a primitive sets tpage info, it will over write the existing data, even if it was sent by
an 0xe? packet.

0xe1 draw mode setting
31 2423 11 10 9 8 76 54 3 0

0xe1 dfe dtd tp abr ty tx
See above for explanations

It seems that bits 11-13 of the status register can also be passed with this command on some GPU's other
than type 2. (i.e. Command 0x10000007 doesn't return 2)

0xe2 texture window setting
31 2423 2019 1514 109 54 0

0xe2 twx twy tww twh
twx Texture window X, (twx*8)
twy Texture window Y, (twy*8)
tww Texture window width, 256-(tww*8)
twh Texture window height, 256-(twh*8)

0xe3 set drawing area top left
31 2423 1615 87 0

0xe3 Y X

Sets the drawing area top left corner. X &Y are absolute frame buffer coordinates.

0xe4 set drawing area bottom right
31 2423 16 15 87 0

0xe4 Y X

Sets the drawing area bottom right corner. X &Y are absolute frame buffer coordinates.

0xe5 drawing offset
31 2423 2013 1110 0

0xe5 OffsY OffsX

Offset Y = y << 11
Sets the drawing area offset within the drawing area. X&Y are offsets in the frame buffer.

0xe6 drawing offset
31 2423 2 1 0

0xe6 Mask2 Mask1

Mask1 Set mask bit while drawing. 1 = on
Mask2 Do not draw to mask areas. 1= on

While mask1 is on, the GPU will set the MSB of all pixels it draws. While mask2 is on, the GPU will not
write to pixels with set MSB's

 DMA and the GPU
The GPU has two DMA channels allocated to it. DMA channel 2 is used to send linked packet lists to the

GPU and to transfer image data to and from the frame buffer. DMA channel 6 is sets up an empty linked list, of
which each entry points to the previous (i.e. reverse clear an OT.)

 DMA Second Memory Address Register (D2_MADR) 0x1f80_10a0

31 0
MADR

MADR Pointer to the virtual address the DMA will start reading from/writing to.

 DMA Second Block Control Register (D2_BCR) 0x1f80_10a4

31 0
BA BS
16 16

BA Amount of blocks
BS Block size (words)

Sets up the DMA blocks. Once started the DMA will send BA blocks of BS
words. Don't set a block size larger then $10 words, as the command buffer
of the GPU is 64 bytes.

DMA Second Channel Control Register (D2_CHCR) 0x1f80_10a8

31 0
0 TR 0 LI CO 0 DR
7 1 13 1 1 8 1

TR 0 No DMA transfer busy.
1 Start DMA transfer/DMA transfer busy.

LR 1 Transfer linked list. (GPU only)
CO 1 Transfer continuous stream of data.
DR 1 Direction from memory

0 Direction from memory

This configures the DMA channel. The DMA starts when bit 18 is set. DMA is finished as soon as bit 18 is
cleared again. To send or receive data to/from VRAM send the appropriate GPU packets first (0xa0/0xc0)

 DMA Sixth Memory Address Register (D6_MADR) 0x1f80_10e0

31 0
MADR

MADR Pointer to the virtual address if the last entry.

 DMA Sixth Block Control Register (D6_BCR) 0x1f80_10e4

31 0
BC

 BC Number of list entries.

DMA Sixth Channel Control Register (D6_CHCR) 0x1f80_10e8

31 0
0 TR 0 LI CO 0 DR
7 1 13 1 1 8 1

TR 0 No DMA transfer busy.
1 Start DMA transfer/DMA transfer busy.

LR 1 Transfer linked list. (GPU only)
CO 1 Transfer continuous stream of data.
DR 1 Direction from memory

0 Direction from memory

This configures the DMA channel. The DMA starts when bit 18 is set. DMA is finished as soon as bit 18 is
cleared again. To send or receive data to/from VRAM send the appropriate GPU packets first (0xa0/0xc0) When this
register is set to $11000002, the DMA channel will create an empty linked list of D6_BCR entries ending at the
address in D6_MADR. Each entry has a size of 0, and points to the previous. The first entry is So if D6_MADR =
$80100010, D6_BCR=$00000004, and the DMA is kicked this mwill result in a list looking like this:

0x8010_0000 0x00ff_ffff
0x8010_0004 0x0010_0000
0x8010_0008 0x0010_0004
0x8010_000c 0x0010_0008
0x8010_0010 0x0010_000c

 DMA Primary Control Register (DPCR) 0x1f80_10f0

DMA6 DMA5 DMA4 DMA3 DMA2 DMA1 DMA0
4 4 4 4 4 4 4 4

Each register has a 4 bit control block allocated in this register.
Bit 3 1= DMA Enabled
 2 Unknown
 1 Unknown
 0 Unknown

Bit 3 must be set for a channel to operate.

Common GPU functions, step by step.

• Initializing the GPU.

First thing to do when using the GPU is to initialize it. To do that take the following steps:

1 - Reset the GPU (GP1 command $00). This turns off the display as well.
2 - Set horizontal and vertical start/end. (GP1 command $06, $07)
3 - Set display mode. (GP1 command $08)
4 - Set display offset. (GP1 command $05)
5 - Set draw mode. (GP0 command $e1)
6 - Set draw area. (GP0 command $e3, $e4)
7 - Set draw offset. (GP0 command $e5)
8 - Enable display.

• Sending a linked list.

The normal way to send large numbers of primitives is by using a linked list DMA transfer. This list is built up
of entries of which each points to the next. One entry looks like this:

dw $nnYYYYYY ; nn = the number of words in the list entry
; YYYYYY = address of next list entry & 0x00ff_ffff

1 dw .. ; here goes the primitive.
2 dw ;
… dw .. ;
nn-1 dw .. ;
nn dw .. ;

The last entry in the list should have 0xffffff as pointer, which is the terminator. As soon as this value is
found DMA is ended. If the entry size is set to 0, no data will be transferred to the GPU and the next entry is
processed.

To send the list do this:
1 - Wait for the GPU to be ready to receive commands. (bit $1c == 1)
2 - Enable DMA channel 2
3 - Set GPU to DMA CPU->GPU mode. ($04000002)
3 - Set D2_MADR to the start of the list
4 - Set D2_BCR to zero.
5 - Set D2_CHCR to link mode, memory->GPU and DMA enable. ($01000401)

• Uploading Image data through DMA.

To upload an image to VRAM take the following steps:

1 - Wait for the GPU to be idle and DMA to finish. Enable DMA channel 2 if necessary.
2 - Send the 'Send image to VRAM' primitive. (You can send this through DMA if you want. Use the linked list
method described above)
3 - Set DMA to CPU->GPU ($04000002) (if you didn't do so already in the previous step)
4 - Set D2_MADR to the start of the list
5 - Set D2_BCR with: bits 31-16 = Number of words to send (H*W /2)

bits 15- 0 = Block size of 1 word. ($01)
if H*W is odd, add 1. (Pixels are 2 bytes, send an extra blank pixel in case of an odd amount)

6 - Set D2_CHCR to continuous mode, memory -> GPU and DMA enable. ($01000201)

Note that H, W, X and Y are always in frame buffer pixels, even if you send image data in other formats.
You can use bigger block sizes if you need more speed. If the number of words to be sent is not a multiple of the
block size, you'll have to send the remainder separately, because the GPU only accepts an extra halfword if the
number of pixels is odd. (i.e. of the last word sent, only the low half word is used.) Also take care not to use block
sizes bigger than 0x10, as the buffer of the GPU is only 64 bytes (=0x10 words).

• Waiting to send commands

You can send new commands as soon as DMA has ceased and the GPU is ready.
1 - Wait for bit $18 to become 0 in D2_CHCR
2 - Wait for bit $1c to become 1 in GP1.

The Geometry Transformation Engine (GTE)
The Geometry Transformation Engine (GTE) is the heart of all 3D calculations on the PSX. The GTE can

perform vector and matrix operations, perspective transformation, color equations and the like. It is much faster than
the CPU on these operations. It is mounted as the second coprocessor and as such is no physical address in the
memory of the PSX. All control is done through special instructions.

Basic mathematics
The GTE is basicly an engine for vector mathematics. The basic representation of a point(vertex) in 3d

space is through a vector of the sort [X,Y,Z]. In GTE operation there's basicly two kinds of these, vectors of variable
length and vectors of a unit length of 1.0, called normal vectors. The first is used to decribe a locations and
translations in 3d space, the second to describe a direction.

Rotation of vertices is performed by multiplying the vector of the vertex with a rotation matrix. The rotation
matrix is a 3x3 matrix consisting of 3 normal vectors which are orthogonal to each other. (It's actually the matrix
which describes the coordinate system in which the vertex is located in relation to the unit coordinate system. See a
math book for more details.) This matrix is derived from rotation angles as follows:

sn = sin(n), cn = cos(n)

Rotation angle A about X axis:
| 1 0 0|
| 0 cA -sA|
| 0 sA cA|

Rotation angle B about Y axis:
 | cB 0 sB|
| 0 1 0|
|-sB 0 cB|

Rotation angle C about Z axis:
| cC -sC 0|
| sC cC 0|
| 0 0 1|

Rotation about multiple axis can be done by multiplying these matrices with eachother. Note that the order
in which this multiplication is done *IS* important. The GTE has no sine or cosine functions, so the calculation of
these must be done by the CPU.

Translation is the simple addition of two vectors, relocating the vertex within its current coordinate system.
Needless to say the order in which translation and rotation occur for a vector is important.

Brief Function descriptions

RTPS/RTPT
Rotate, translate and perpective transformation.

These two functions perform the final 3d calculations on one or three vertices at once. The points are first
multiplied with a rotation matrix(R), and after that translated(TR). Finally a perspective transformation is applied,
which results in 2d screen coordinates. It also returns an interpolation value to be used with the various depth cueing
instructions.

MVMVA
Matrix & Vector multiplication and addition.

Multiplies a vector with either the rotation matrix, the light matrix or the color matrix and then adds the
translation vector or background color vector.

DCPL
Depth cue light color

First calculates a color from a light vector(normal vector of a plane multiplied with the light matrix and zero
limited) and a provided RGB value. Then performs depth cueing by interpolating between the far color vector and
the newfound color.

DPCS/DPCT
Depth cue single/triple

Performs depth cueing by interpolating between a color and the far color vector on one or three colors.

INTPL
Interpolation

Interpolates between a vector and the far color vector.

SQR
Square

Calculates the square of a vector.

NCS/NCT
Normal Color

Calculates a color from the normal of a point or plane and the light sources and colors. The basic color of
the plane or point the normal refers to is assumed to be white.

NCDS/NCDT
Normal Color Depth Cue.

Same as NCS/NCT but also performs depth cueing (like DPCS/DPCT)

NCCS/NCCT
Same NCS/NCT, but the base color of the plane or point is taken into account.

CDP
A color is calculated from a light vector (base color is assumed to be white) and depth cueing is performed

(like DPCS).

CC
A color is calculated from a light vector and a base color.

NCLIP
Calculates the outer product of three 2d points.(ie. 3 vertices which define a plane after projection.)

The 3 vertices should be stored clockwise according to the visual point:

 Z+
 /
 /____ X+
 |
 |
 Y+

If this is so, the result of this function will be negative if we are
facing the backside of the plane.

AVSZ3/AVSZ4

Adds 3 or 4 z values together and multplies them by a fixed point value. This value is normally chosen so
that this function returns the average of the z values (usually further divided by 2 or 4 for easy adding to the OT)

OP
Calculates the outer product of 2 vectors.

GPF
Multiplies 2 vectors. Also returns the result as 24bit rgb value.

GPL
Multiplies a vector with a scalar and adds the result to another vector. Also returns the result as 24bit rgb

value.

Instructions
The CPU has six special load and store instructions for the GTE registers, and an instruction to issue

commands to the coprocessor.

rt CPU register 0-31
gd GTE data register 0-31
gc GTE control register 0-31
imm 16 bit immediate value
base CPU register 0-31
imm(base) address pointed to by base + imm.
b25 25 bit wide data field.

LWC2 gd, imm(base) stores value at imm(base) in GTE data register gd.
SWC2 gd, imm(base) stores GTE data register at imm(base).
MTC2 rt, gd stores register rt in GTE data register gd.
MFC2 rt, gd stores GTE data register gd in register rt.
CTC2 rt, gc stores register rt in GTE control register gc.
CFC2 rt, gc stores GTE control register in register rt.

COP2 b25 Issues a GTE command.

GTE load and store instructions have a delay of 2 instructions, for any GTE commands or operations accessing that
register.

Programming the GTE.
Before use the GTE must be turned on. The GTE has bit 30 allocated to it in the status register of the

system control coprocessor (cop0). Before any GTE instruction is used, this bit must be set.

GTE instructions and functions should not be used in
- Delay slots of jumps and branches
- Event handlers or interrupts.

If an instruction that reads a GTE register or a GTE command is executed before the current GTE command is
finished, the CPU will hold until the instruction has finished. The number of cycles each GTE instruction takes is in
the command list.

Registers.
The GTE has 32 data registers, and 32 control registers, each 32 bits wide. The control registers are

commonly called Cop2C, while the data registers are called Cop2D. The following list describes their common use.
The format is explained later on.

 Control Registers (Cop2C)
 Number Name Description

0 R11R12 Rotation matrix elements 1 to 1, 1 to 2
1 R13R21 Rotation matrix elements 1 to 3, 2 to 1
2 R22R23 Rotation matrix elements 2 to 2, 2 to 3
3 R31R32 Rotation matrix elements 3 to 1, 3 to 2
4 R33 Rotation matrix elements 3 to 3
5 TRX Translation vector X
6 TRY Translation vector Y
7 TRZ Translation vector Z
8 L11L12 Light source matrix elements 1 to 1, 1 to 2
9 L13L21 Light source matrix elements 1 to 3, 2 to 1

10 L22L23 Light source matrix elements 2 to 2, 2 to 3
11 L31L32 Light source matrix elements 3 to 1, 3 to 2
12 L33 Light source matrix elements 3 to 3
13 RBK Background color red component
14 BBK Background color blue component
15 GBK Background color green component
16 LR1LR2 Light color matrix source 1&2 red component
17 LR3LG1 Light color matrix source 3 red, 1 green component
18 LG2LG3 Light color matrix source 2&3 green component
19 LB1LB2 Light color matrix source 1&2 blue comp
20 LB3 Light color matrix source 3 blue component
21 RFC Far color red component
22 GFC Far color green component
23 BFC Far color blue component
24 OFX Screen offset X
25 OFY Screen offset y
26 H Projection plane distance
27 DQA depth queuing parameter A.(coefficient.)
28 DQB Depth queuing parameter B.(offset.)
29 ZSF3 Z3 average scale factor (normally 1/3)
30 ZSF4 Z4 average scale factor (normally 1/4)
31 FLAG Returns any calculation errors.(See below)

 Control Register format
The GTE uses signed, fixed point registers for mathematics. The following is a bit-wise description of the

registers.

 R11R12
31 0

R11 R12
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 R13R21
31 0

R13 R21
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 R22R23
31 0

R22 R23
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 R31R32
31 0

R31 R32
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 R33
31

0
0

R33
Sign

integral part
fractional part

1
3

12

 TRX
31 0
Sign integral part

1 31

 TRY
31 0
Sign integral part

1 31

 TRZ
31 0
Sign integral part

1 31

 L11L12
31 0

L11 L12
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 L13L21
31 0

L13 L21

Sign integral part fractional part Sign integral part fractional part
1 3 12 1 3 12

 L22L23
31 0

L22 L23
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 L31L32
31 0

L31 L32
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 L33
31

0
0

L33
Sign

integral part
fractional part

1
3

12

 RBK
31 0
Sign integral part fractional part

1 19 12

 GBK
31 0
Sign integral part fractional part

1 19 12

 BBK
31 0
Sign integral part fractional part

1 19 12

 LR1LR2
31 0

LR1 LR2
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 LR3LLG1
31 0

LR3 LG1
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 LG2LG3
31 0

LG2 LG3
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 LB1LB2
31 0

LB1 LB2
Sign integral part fractional part Sign integral part fractional part

1 3 12 1 3 12

 LB3
31

0
0

LB3
Sign

integral part
fractional part

1
3

12

 RFC
31 0
Sign integral part fractional part

1 27 4

 GFC
31 0
Sign integral part fractional part

1 27 4

 BFC
31 0
Sign integral part fractional part

1 27 4

 OFX
31 0
Sign integral part fractional part

1 15 16

 0FY
31 0

Sign integral part fractional part
1 15 16

 H
31

0
0

H
integral part

16

 DQA
31

0
0

DQA
Sign

integral part
fractional part

1
7
8

 DQB
31

0
0

DQB
Sign

integral part
fractional part

1
7
8

 ZF3
31

0
0

ZF3
Sign

integral part
fractional part

1
3

12

 DZF4
31

0
0

ZF4
Sign

integral part
fractional part

1
3

12

 FLAGS
31 0

Flags bit description.
31 Logical sum of bits 30-23 and bits 18-13
30 Calculation test result #1 overflow (2^43 or more)
29 Calculation test result #2 overflow (2^43 or more)
28 Calculation test result #3 overflow (2^43 or more)
27 Calculation test result #1 underflow (less than -2^43)
26 Calculation test result #2 underflow (less than -2^43)
25 Calculation test result #3 underflow (less than -2^43)
24 Limiter A1 out of range (less than 0, or less than -2^15, or 2^15 or more)
23 Limiter A2 out of range (less than 0, or less than -2^15, or 2^15 or more)
22 Limiter A3 out of range (less than 0, or less than -2^15, or 2^15 or more)
21 Limiter B1 out of range (less than 0, or 2^8 or more)
20 Limiter B2 out of range (less than 0, or 2^8 or more)
19 Limiter B3 out of range (less than 0, or 2^8 or more)
18 Limiter C out of range (less than 0, or 2^16 or more)
17 Divide overflow generated (quotient of 2.0 or more)
16 Calculation test result #4 overflow (2^31 or more)
15 Calculation test result #4 underflow (less than -2^31)
14 Limiter D1 out of range (less than 2^10, or 2^10 or more)
13 Limiter D2 out of range (less than 2^10, or 2^10 or more)
12 Limiter E out of range (less than 0, or 2^12 or more)

 Data Registers
Data registers consist of the other “half” of the GTE. Note in some functions format are different from the

one that's given here. The numbers in the format fields are the signed, integer and fractional parts of the field. So
1,3,12 means signed(1 bit), 3 bits integral part, 12 bits fractional part.

Data Registers (Cop2D)
Number Name r/w 31 1615 0 Format Description

0. VXY0 r/w VY0 VX0 1,3,12 or 1,15,0 Vector 0 X and Y
1 VZ0 r/w 0 VZ0 1,3,12 or 1,15,0 Vector 0 Z
2 VXY1 r/w VY1 VX1 1,3,12 or 1,15,0 Vector 1 X and Y
3 VZ1 r/w 0 VZ1 1,3,12 or 1,15,0 Vector 1 Z
4 VXY2 r/w VY2 VX2 1,3,12 or 1,15,0 Vector 2 X and Y
5 VZ2 r/w 0 VZ2 1,3,12 or 1,15,0 Vector 2 Z
6 RGB r/w Code, R G,B 8 bits for each RGB value. Code is passed, but

not used in calculation
7 OTZ r 0 OTZ 0,15,0 Z Average value.
8 IR0 r/w Sign IR0 1, 3,12 Intermediate value 0. Format may

differ
9 IR1 r/w Sign IR1 1, 3,12 Intermediate value 1. Format may

differ
10 IR2 r/w Sign IR2 1, 3,12 Intermediate value 2. Format may

differ
11 IR3 r/w Sign IR3 1, 3,12 Intermediate value 3. Format may

differ
12 SXY0 r/w SX0 SY0 1,15, 0 Screen XY coordinate FIFO (Note

1)
13 SXY1 r/w SX1 SY1 1,15, 0 Screen XY coordinate FIFO
14 SXY2 r/w SX2 SY2 1,15, 0 Screen XY coordinate FIFO
15 SXYP r/w SXP SYP 1,15, 0 Screen XY coordinate FIFO
16 SZ0 r/w 0 SZ0 0,16, 0 Screen Z FIFO (Note 1)
17 SZ1 r/w 0 SZ1 0,16, 0 Screen Z FIFO
18 SZ2 r/w 0 SZ2 0,16, 0 Screen Z FIFO
19 SZ3 r/w 0 SZ3 0,16, 0 Screen Z FIFO
20 RGB0 r/w CD0,B0 G0,R0 8 bits each Characteristic color FIFO(Note 1)
21 RGB1 r/w CD1,B1 G1,R1 8 bits each Characteristic color FIFO
22 RGB2 r/w CD2,B2 G0,R2 8 bits each CD2 is the bit pattern of currently

executed function
23 RES1 - - - - Prohibited
24 MAC0 r/w MAC0 1,31,0 Sum of products value 1
25 MAC1 r/w MAC1 1,31,0 Sum of products value 1
26 MAC2 r/w MAC2 1,31,0 Sum of products value 1
27 MAC3 r/w MAC3 1,31,0 Sum of products value 1
28 IRGB w 0 IB,IG,IR Note 2 Note 2
29 ORGB r 0 0B,0G,OR Note 3 Note 3
30 LZCS w LZCS 1,31,0 Leading zero count source data

(Note 4)
31 LZCR r LZCR 6,6,0 Leading zero count result (Note 4)

Note 1
The SXYx, SZx and RGBx are first in first out registers (FIFO). The last calculation result is stored in the

last register, and previous results are stored in previous registers. So for example when a new SXY value is obtained
the following happens:
 SXY0 = SXY1
 SXY1 = SXY2
 SXY2 = SXYP
 SXYP = result.

Note 2
 IRGB

0 R G B
31 1514 109 54 0

When writing a value to IRGB the following happens:
IR1 = IR format converted to (1,11,4)
IR2 = IG format converted to (1,11,4)
IR3 = IB format converted to (1,11,4)

Note 3
 0RGB

0 R G B
31 1514 109 54 0

When writing a value to IRGB the following happens:
IR = (IR1>>7) &0x1f
IG = (IR2>>7) &0x1f
IB = (IR3>>7) &0x1f

 Note 4
Reading LZCR returns the leading 0 count of LZCS if LZCS is positive and the leading 1 count of LZCS if

LZCS is negative.

GTE Commands.
This part describes the actual calculations performed by the various GTE functions. The first line contains

the name of the function, the number of cycles it takes and a brief description. The second part contains any fields
that may be set in the opcode and in the third line is the actual opcode. See the end of the list for the fields and their
descriptions. Then follows a list of all registers which are needed in the calculation under the 'in', and a list of
registers which modified under the 'out' with a brief description and the format of the data. Next follows the
calculation which is performed after initiating the function. The format field left is the size in which the data is
stored, the format field on the right contains the format in which the calculation is performed. At certain points in the
calculation checks and limitations are done and their results stored in the flag register, see the table below. They are
identified with the code from the second column of the table directly followed by square brackets enclosing the part
of the calculation on which the check is performed. The additional Lm_ identifier means the value is limited to the
bottom or ceiling of the check if it exceeds the boundary.

bit description
31 Checksum.
30 A1 Result larger than 43 bits and positive
29 A2 Result larger than 43 bits and positive
28 A3 Result larger than 43 bits and positive
27 A1 Result larger than 43 bits and negative
26 A2 Result larger than 43 bits and negative
25 A3 Result larger than 43 bits and negative
24 B1 Value negative(lm=1) or larger than 15 bits(lm=0)
23 B2 Value negative(lm=1) or larger than 15 bits(lm=0)
22 B3 Value negative(lm=1) or larger than 15 bits(lm=0)
21 C1 Value negative or larger than 8 bits.
20 C2 Value negative or larger than 8 bits.
19 C3 Value negative or larger than 8 bits.
18 D Value negative or larger than 16 bits.
17 E Divide overflow. (quotient > 2.0)
16 F Result larger than 31 bits and positive.
15 F Result larger than 31 bits and negative.
14 G1 Value larger than 10 bits.
13 G2 Value larger than 10 bits.
12 H Value negative or larger than 12 bits.

Name Cycles Command Description
RTPS 15 cop2 0x0180001 Perspective transform

Fields: None
In: V0 Vector to transform. [1,15,0]

R Rotation matrix [1,3,12]
TR Translation vector [1,31,0]
H View plane distance [0,16,0]
DQA Depth que interpolation values. [1,7,8]
DQB [1,7,8]

OFX Screen offset values. [1,15,16]
OFY [1,15,16]

Out: SXY fifo Screen XY coordinates.(short) [1,15,0]
SZ fifo Screen Z coordinate.(short) [0,16,0]
IR0 Interpolation value for depth queing. [1,3,12]
IR1 Screen X (short) [1,15,0]
IR2 Screen Y (short) [1,15,0]
IR3 Screen Z (short) [1,15,0]
MAC1 Screen X (long) [1,31,0]
MAC2 Screen Y (long) [1,31,0]
MAC3 Screen Z (long) [1,31,0]

Calculation:
[1,31,0] MAC1=A1[TRX + R11*VX0 + R12*VY0 + R13*VZ0] [1,31,12]
[1,31,0] MAC2=A2[TRY + R21*VX0 + R22*VY0 + R23*VZ0] [1,31,12]
[1,31,0] MAC3=A3[TRZ + R31*VX0 + R32*VY0 + R33*VZ0] [1,31,12]
[1,15,0] IR1= Lm_B1[MAC1] [1,31,0]
[1,15,0] IR2= Lm_B2[MAC2] [1,31,0]
[1,15,0] IR3= Lm_B3[MAC3] [1,31,0]

SZ0<-SZ1<-SZ2<-SZ3
[0,16,0] SZ3= Lm_D(MAC3) [1,31,0]

SX0<-SX1<-SX2, SY0<-SY1<-SY2
[1,15,0] SX2= Lm_G1[F[OFX + IR1*(H/SZ)]] [1,27,16]
[1,15,0] SY2= Lm_G2[F[OFY + IR2*(H/SZ)]] [1,27,16]
[1,31,0] MAC0= F[DQB + DQA * (H/SZ)] [1,19,24]
[1,15,0] IR0= Lm_H[MAC0] [1,31,0]

Notes:
Z values are limited downwards at 0.5 * H. For smaller z values you'll have
write your own routine.

Name Cycles Command Description
RTPT 23 cop2 0x0280030 Perspective transform on 3 points

Fields: None
in: V0 Vector to transform. [1,15,0]

V1 [1,15,0]
V2 [1,15,0]
R Rotation matrix [1,3,12]
TR Translation vector [1,31,0]
H View plane distance [0,16,0]
DQA Depth que interpolation values. [1,7,8]
DQB [1,7,8]
OFX Screen offset values. [1,15,16]
OFY [1,15,16]

out: SXY fifo Screen XY coordinates.(short) [1,15,0]
SZ fifo Screen Z coordinate.(short) [0,16,0]
IR0 Interpolation value for depth queing. [1,3,12]
IR1 Screen X (short) [1,15,0]
IR2 Screen Y (short) [1,15,0]
IR3 Screen Z (short) [1,15,0]
MAC1 Screen X (long) [1,31,0]
MAC2 Screen Y (long) [1,31,0]
MAC3 Screen Z (long) [1,31,0]

Calculation: Same as RTPS, but repeats for V1 and V2.

Name Cycles Command Description
MVMVA 8 cop2 0x0400012 Multiply vector by matrix and vector addition.
Fields: sf, mx, v, cv, lm

in: V0/V1/V2/IR Vector v0, v1, v2 or [IR1,IR2,IR3]
R/LLM/LCM Rotation, light or color matrix. [1,3,12]
TR/BK Translation or background color vector.

out: [IR1,IR2,IR3] Short vector
[MAC1,MAC2,MAC3] Long vector

Calculation:
MX = matrix specified by mx
V = vector specified by v
CV = vector specified by cv

MAC1=A1[CV1 + MX11*V1 + MX12*V2 + MX13*V3]
MAC2=A2[CV2 + MX21*V1 + MX22*V2 + MX23*V3]
MAC3=A3[CV3 + MX31*V1 + MX32*V2 + MX33*V3]
IR1=Lm_B1[MAC1]
IR2=Lm_B2[MAC2]
IR3=Lm_B3[MAC3]

Notes:
The cv field allows selection of the far color vector, but this vector
is not added correctly by the GTE.

Name Cycles Command Description
DPCL 8 cop2 0x0680029 Depth Cue Color light

Fields:
In: RGB Primary color. R,G,B,CODE [0,8,0]

IR0 interpolation value. [1,3,12]
[IR1,IR2,IR3] Local color vector. [1,3,12]
CODE Code value from RGB. CODE [0,8,0]
FC Far color. [1,27,4]

Out: RGBn RGB fifo Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculation:
[1,27,4] MAC1=A1[R*IR1 + IR0*(Lm_B1[RFC - R * IR1])] [1,27,16]
[1,27,4] MAC2=A2[G*IR2 + IR0*(Lm_B1[GFC - G * IR2])] [1,27,16]
[1,27,4] MAC3=A3[B*IR3 + IR0*(Lm_B1[BFC - B * IR3])] [1,27,16]
[1,11,4] IR1=Lm_B1[MAC1] [1,27,4]
[1,11,4] IR2=Lm_B2[MAC2] [1,27,4]
[1,11,4] IR3=Lm_B3[MAC3] [1,27,4]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]

Name Cycles Command Description
DPCS 8 cop2 0x0780010 Depth Cueing

Fields:
In: IR0 Interpolation value [1,3,12]

RGB Color R,G,B,CODE [0,8,0]
FC Far color RFC,GFC,BFC [1,27,4]

Out: RGBn RGB fifo Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculations:
[1,27,4] MAC1=A1[(R + IR0*(Lm_B1[RFC - R])] [1,27,16][lm=0]
[1,27,4] MAC2=A2[(G + IR0*(Lm_B1[GFC - G])] [1,27,16][lm=0]
[1,27,4] MAC3=A3[(B + IR0*(Lm_B1[BFC - B])] [1,27,16][lm=0]
[1,11,4] IR1=Lm_B1[MAC1] [1,27,4][lm=0]
[1,11,4] IR2=Lm_B2[MAC2] [1,27,4][lm=0]
[1,11,4] IR3=Lm_B3[MAC3] [1,27,4][lm=0]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]

Name Cycles Command Description
DPCT 17 cop2 0x0F8002A Depth cue color RGB0,RGB1,RGB2

Fields:

In: IR0 Interpolation value [1,3,12]
RGB0,RGB1,RGB2 Colors in RGB fifo. Rn,Gn,Bn,CDn [0,8,0]
FC Far color RFC,GFC,BFC [1,27,4]

Out: RGBn RGB fifo Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculations:
[1,27,4] MAC1=A1[R0+ IR0*(Lm_B1[RFC - R0])] [1,27,16][lm=0]
[1,27,4] MAC2=A2[G0+ IR0*(Lm_B1[GFC - G0])] [1,27,16][lm=0]
[1,27,4] MAC3=A3[B0+ IR0*(Lm_B1[BFC - B0])] [1,27,16][lm=0]
[1,11,4] IR1=Lm_B1[MAC1] [1,27,4][lm=0]
[1,11,4] IR2=Lm_B2[MAC2] [1,27,4][lm=0]
[1,11,4] IR3=Lm_B3[MAC3] [1,27,4][lm=0]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]

Performs this calculation 3 times, so all three RGB values have been
replaced by the depth cued RGB values.

Name Cycles Command Description
INTPL 8 cop2 0x0980011 Interpolation of vector and far color

Fields:
In: [IR1,IR2,IR3] Vector [1,3,12]

IR0 Interpolation value [1,3,12]
CODE Code value from RGB. CODE [0,8,0]
FC Far color RFC,GFC,BFC [1,27,4]

Out: RGBn RGB fifo Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculations:

[1,27,4] MAC1=A1[IR1 + IR0*(Lm_B1[RFC - IR1])] [1,27,16]
[1,27,4] MAC2=A2[IR2 + IR0*(Lm_B1[GFC - IR2])] [1,27,16]
[1,27,4] MAC3=A3[IR3 + IR0*(Lm_B1[BFC - IR3])] [1,27,16]
[1,11,4] IR1=Lm_B1[MAC1] [1,27,4]
[1,11,4] IR2=Lm_B2[MAC2] [1,27,4]
[1,11,4] IR3=Lm_B3[MAC3] [1,27,4]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]

Name Cycles Command Description
SQR 5 cop2 0x0A00428 Square of vector

Fields: sf
in: [IR1,IR2,IR3] vector [1,15,0][1,3,12]
out: [IR1,IR2,IR3] vector^2 [1,15,0][1,3,12]

[MAC1,MAC2,MAC3] vector^2 [1,31,0][1,19,12]

Calculation: (left format sf=0, right format sf=1)

[1,31,0][1,19,12] MAC1=A1[IR1*IR1] [1,43,0][1,31,12]
[1,31,0][1,19,12] MAC2=A2[IR2*IR2] [1,43,0][1,31,12]
[1,31,0][1,19,12] MAC3=A3[IR3*IR3] [1,43,0][1,31,12]
[1,15,0][1,3,12] IR1=Lm_B1[MAC1] [1,31,0][1,19,12][lm=1]
[1,15,0][1,3,12] IR2=Lm_B2[MAC2] [1,31,0][1,19,12][lm=1]
[1,15,0][1,3,12] IR3=Lm_B3[MAC3] [1,31,0][1,19,12][lm=1]

Name Cycles Command Description
NCS 14 cop2 0x0C8041E Normal color v0

Fields:
In: V0 Normal vector [1,3,12]

BK Background color RBK,GBK,BBK [1,19,12]
CODE Code value from RGB. CODE [0,8,0]
LCM Color matrix [1,3,12]
LLM Light matrix [1,3,12]

Out: RGBn RGB fifo. Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

[1,19,12] MAC1=A1[L11*VX0 + L12*VY0 + L13*VZ0] [1,19,24]
[1,19,12] MAC2=A2[L21*VX0 + L22*VY0 + L23*VZ0] [1,19,24]
[1,19,12] MAC3=A3[L31*VX0 + L32*VY0 + L33*VZ0] [1,19,24]
[1,3,12] IR1= Lm_B1[MAC1] [1,19,12][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,19,12][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,19,12][lm=1]
[1,19,12] MAC1=A1[RBK + LR1*IR1 + LR2*IR2 + LR3*IR3] [1,19,24]
[1,19,12] MAC2=A2[GBK + LG1*IR1 + LG2*IR2 + LG3*IR3] [1,19,24]
[1,19,12] MAC3=A3[BBK + LB1*IR1 + LB2*IR2 + LB3*IR3] [1,19,24]
[1,3,12] IR1= Lm_B1[MAC1] [1,19,12][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,19,12][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,19,12][lm=1]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]

Name Cycles Command Description
NCT 30 cop2 0x0D80420 Normal color v0, v1, v2

Fields:
In: V0,V1,V2 Normal vector [1,3,12]

BK Background color RBK,GBK,BBK [1,19,12]
CODE Code value from RGB. CODE [0,8,0]
LCM Color matrix [1,3,12]
LLM Light matrix [1,3,12]

Out: RGBn RGB fifo. Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculation: Same as NCS, but repeated for V1 and V2.

Name Cycles Command Description
NCDS 19 cop2 0x0E80413 Normal color depth cuev0

Fields:
In: V0 Normal vector [1,3,12]

BK Background color RBK,GBK,BBK [1,19,12]
RGB Primary color R,G,B,CODE [0,8,0]
LLM Light matrix [1,3,12]
LCM Color matrix [1,3,12]
IR0 Interpolation value [1,3,12]

Out: RGBn RGB fifo. Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculation:
[1,19,12] MAC1=A1[L11*VX0 + L12*VY0 + L13*VZ0] [1,19,24]
[1,19,12] MAC2=A1[L21*VX0 + L22*VY0 + L23*VZ0] [1,19,24]
[1,19,12] MAC3=A1[L31*VX0 + L32*VY0 + L33*VZ0] [1,19,24]
[1,3,12] IR1= Lm_B1[MAC1] [1,19,12][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,19,12][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,19,12][lm=1]
[1,19,12] MAC1=A1[RBK + LR1*IR1 + LR2*IR2 + LR3*IR3] [1,19,24]
[1,19,12] MAC2=A1[GBK + LG1*IR1 + LG2*IR2 + LG3*IR3] [1,19,24]
[1,19,12] MAC3=A1[BBK + LB1*IR1 + LB2*IR2 + LB3*IR3] [1,19,24]
[1,3,12] IR1= Lm_B1[MAC1] [1,19,12][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,19,12][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,19,12][lm=1]
[1,27,4] MAC1=A1[R*IR1 + IR0*(Lm_B1[RFC-R*IR1])] [1,27,16][lm=0]
[1,27,4] MAC2=A1[G*IR2 + IR0*(Lm_B2[GFC-G*IR2])] [1,27,16][lm=0]
[1,27,4] MAC3=A1[B*IR3 + IR0*(Lm_B3[BFC-B*IR3])] [1,27,16][lm=0]
[1,3,12] IR1= Lm_B1[MAC1] [1,27,4][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,27,4][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,27,4][lm=1]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]

Name Cycles Command Description
NCDT 44 cop2 0x0F80416 Normal color depth cue v0, v1, v2

Fields:
In: V0 Normal vector [1,3,12]

V1 Normal vector [1,3,12]
V2 Normal vector [1,3,12]
BK Background color RBK,GBK,BBK [1,19,12]
FC Far color RFC,GFC,BFC [1,27,4]
RGB Primary color R,G,B,CODE [0,8,0]
LLM Light matrix [1,3,12]
LCM Color matrix [1,3,12]
IR0 Interpolation value [1,3,12]

Out: RGBn RGB fifo. Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculation:
Same as NCDS but repeats for v1 and v2.

Name Cycles Command Description
NCCS 17 cop2 0x108041B Normal color col. v0

Fields:
In: V0 Normal vector [1,3,12]

BK Background color RBK,GBK,BBK [1,19,12]
RGB Primary color R,G,B,CODE [0,8,0]
LLM Light matrix [1,3,12]
LCM Color matrix [1,3,12]

Out: RGBn RGB fifo. Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculation:
[1,19,12] MAC1=A1[L11*VX0 + L12*VY0 + L13*VZ0] [1,19,24]
[1,19,12] MAC2=A2[L21*VX0 + L22*VY0 + L23*VZ0] [1,19,24]
[1,19,12] MAC3=A3[L31*VX0 + L32*VY0 + L33*VZ0] [1,19,24]
[1,3,12] IR1= Lm_B1[MAC1]
[1,19,12][lm=1]
[1,3,12] IR2= Lm_B2[MAC2]
[1,19,12][lm=1]
[1,3,12] IR3= Lm_B3[MAC3]
[1,19,12][lm=1]
[1,19,12] MAC1=A1[RBK + LR1*IR1 + LR2*IR2 + LR3*IR3] [1,19,24]
[1,19,12] MAC2=A2[GBK + LG1*IR1 + LG2*IR2 + LG3*IR3] [1,19,24]
[1,19,12] MAC3=A3[BBK + LB1*IR1 + LB2*IR2 + LB3*IR3] [1,19,24]
[1,3,12] IR1= Lm_B1[MAC1]
[1,19,12][lm=1]
[1,3,12] IR2= Lm_B2[MAC2]
[1,19,12][lm=1]
[1,3,12] IR3= Lm_B3[MAC3]
[1,19,12][lm=1]
[1,27,4] MAC1=A1[R*IR1] [1,27,16]
[1,27,4] MAC2=A2[G*IR2] [1,27,16]
[1,27,4] MAC3=A3[B*IR3] [1,27,16]
[1,3,12] IR1= Lm_B1[MAC1] [1,27,4][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,27,4][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,27,4][lm=1]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]

[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]

Name Cycles Command Description
NCCT 39 cop2 0x118043F Normal color col.v0, v1, v2

Fields:
In: V0 Normal vector 1 [1,3,12]

V1 Normal vector 2 [1,3,12]
V2 Normal vector 3 [1,3,12]
BK Background color RBK,GBK,BBK [1,19,12]
RGB Primary color R,G,B,CODE [0,8,0]
LLM Light matrix [1,3,12]
LCM Color matrix [1,3,12]

Out: RGBn RGB fifo. Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculation:
Same as NCCS but repeats for v1 and v2.

Name Cycles Command Description
CDP 13 cop2 0x1280414 Color Depth Queue

Fields:
In: [IR1,IR2,IR3] Vector [1,3,12]

RGB Primary color R,G,B,CODE [0,8,0]
IR0 Interpolation value [1,3,12]
BK Background color RBK,GBK,BBK [1,19,12]
LCM Color matrix [1,3,12]
FC Far color RFC,GFC,BFC [1,27,4]

Out: RGBn RGB fifo Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculation:
[1,19,12] MAC1=A1[RBK + LR1*IR1 + LR2*IR2 + LR3*IR3] [1,19,24]
[1,19,12] MAC2=A2[GBK + LG1*IR1 + LG2*IR2 + LG3*IR3] [1,19,24]
[1,19,12] MAC3=A3[BBK + LB1*IR1 + LB2*IR2 + LB3*IR3] [1,19,24]
[1,3,12] IR1= Lm_B1[MAC1] [1,19,12][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,19,12][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,19,12][lm=1]
[1,27,4] MAC1=A1[R*IR1 + IR0*(Lm_B1[RFC-R*IR1])] [1,27,16][lm=0]
[1,27,4] MAC2=A2[G*IR2 + IR0*(Lm_B2[GFC-G*IR2])] [1,27,16][lm=0]
[1,27,4] MAC3=A3[B*IR3 + IR0*(Lm_B3[BFC-B*IR3])] [1,27,16][lm=0]
[1,3,12] IR1= Lm_B1[MAC1] [1,27,4][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,27,4][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,27,4][lm=1]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]

Name Cycles Command Description
CC 11 cop2 0x138041C Color Col.

Fields:
In: [IR1,IR2,IR3] Vector [1,3,12]

BK Background color RBK,GBK,BBK [1,19,12]
RGB Primary color R,G,B,CODE [0,8,0]
LCM Color matrix [1,3,12]

Out: RGBn RGB fifo. Rn,Gn,Bn,CDn [0,8,0]
[IR1,IR2,IR3] Color vector [1,11,4]
[MAC1,MAC2,MAC3] Color vector [1,27,4]

Calculations:
[1,19,12] MAC1=A1[RBK + LR1*IR1 + LR2*IR2 + LR3*IR3] [1,19,24]
[1,19,12] MAC2=A2[GBK + LG1*IR1 + LG2*IR2 + LG3*IR3] [1,19,24]
[1,19,12] MAC3=A3[BBK + LB1*IR1 + LB2*IR2 + LB3*IR3] [1,19,24]
[1,3,12] IR1= Lm_B1[MAC1] [1,19,12][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,19,12][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,19,12][lm=1]
[1,27,4] MAC1=A1[R*IR1] [1,27,16]
[1,27,4] MAC2=A2[G*IR2] [1,27,16]
[1,27,4] MAC3=A3[B*IR3] [1,27,16]
[1,3,12] IR1= Lm_B1[MAC1] [1,27,4][lm=1]
[1,3,12] IR2= Lm_B2[MAC2] [1,27,4][lm=1]
[1,3,12] IR3= Lm_B3[MAC3] [1,27,4][lm=1]
[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1] [1,27,4]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2] [1,27,4]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3] [1,27,4]
-

Name Cycles Command Description
NCLIP 8 cop2 0x1400006 Normal clipping

Fields:
in: SXY0,SXY1,SXY2 Screen coordinates [1,15,0]
out: MAC0 Outerproduct of SXY1 and SXY2 with [1,31,0]

SXY0 as origin.

Calculation:
[1,31,0] MAC0 = F[SX0*SY1+SX1*SY2+SX2*SY0-SX0*SY2-SX1*SY0-SX2*SY1] [1,43,0]

Name Cycles Command Description
AVSZ3 5 cop2 0x158002D Average of three Z values

Fields:
in: SZ1, SZ2, SZ3 Z-Values [0,16,0]

ZSF3 Divider [1,3,12]
out: OTZ Average. [0,16,0]

MAC0 Average. [1,31,0]

Calculation:
[1,31,0] MAC0=F[ZSF3*SZ1 + ZSF3*SZ2 + ZSF3*SZ3] [1,31,12]
[0,16,0] OTZ=Lm_D[MAC0] [1,31,0]

Name Cycles Command Description
AVSZ4 6 cop2 0x168002E Average of four Z values

Fields:
in: SZ1,SZ2,SZ3,SZ4 Z-Values [0,16,0]

ZSF4 Divider [1,3,12]
out: OTZ Average. [0,16,0]

MAC0 Average. [1,31,0]

Calculation:
[1,31,0] MAC0=F[ZSF4*SZ0 + ZSF4*SZ1 + ZSF4*SZ2 + ZSF4*SZ3] [1,31,12]
[0,16,0] OTZ=Lm_D[MAC0] [1,31,0]

Name Cycles Command Description
OP 6 cop2 0x170000C Outer Product

Fields: sf
in: [R11R12,R22R23,R33] vector 1

[IR1,IR2,IR3] vector 2
out: [IR1,IR2,IR3] outer product

[MAC1,MAC2,MAC3] outer product

Calculation: (D1=R11R12,D2=R22R23,D3=R33)

MAC1=A1[D2*IR3 - D3*IR2]
MAC2=A2[D3*IR1 - D1*IR3]
MAC3=A3[D1*IR2 - D2*IR1]
IR1=Lm_B1[MAC0]
IR2=Lm_B2[MAC1]
IR3=Lm_B3[MAC2]

Name Cycles Command Description
GPF 6 cop2 0x190003D General purpose interpolation

Fields: sf

in: IR0 scaling factor
CODE code field of RGB
[IR1,IR2,IR3] vector

out: [IR1,IR2,IR3] vector
[MAC1,MAC2,MAC3] vector
RGB2 RGB fifo.

Calculation:

MAC1=A1[IR0 * IR1]
MAC2=A2[IR0 * IR2]
MAC3=A3[IR0 * IR3]
IR1=Lm_B1[MAC1]
IR2=Lm_B2[MAC2]
IR3=Lm_B3[MAC3]

[0,8,0] Cd0<-Cd1<-Cd2<- CODE
[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3]

Name Cycles Command Description
GPL 5 cop2 0x1A0003E general purpose interpolation

Fields: sf
in: IR0 scaling factor

CODE code field of RGB
[IR1,IR2,IR3] vector
[MAC1,MAC2,MAC3] vector

out: [IR1,IR2,IR3] vector
[MAC1,MAC2,MAC3] vector
RGB2 RGB fifo.

Calculation:

MAC1=A1[MAC1 + IR0 * IR1]
MAC2=A2[MAC2 + IR0 * IR2]
MAC3=A3[MAC3 + IR0 * IR3]
IR1=Lm_B1[MAC1]
IR2=Lm_B2[MAC2]
IR3=Lm_B3[MAC3]

[0,8,0] Cd0<-Cd1<-Cd2<- CODE

[0,8,0] R0<-R1<-R2<- Lm_C1[MAC1]
[0,8,0] G0<-G1<-G2<- Lm_C2[MAC2]
[0,8,0] B0<-B1<-B2<- Lm_C3[MAC3]

• Field descriptions.

24 20 19 18 1716 1514 1312 11 10 9 0
sf mx v cv lm

sf 0 vector format (1,31, 0)
1 vector format (1,19,12)

mx 0 Multiply with rotation matrix
1 Multiply with light matrix
2 Multiply with color matrix
3 Unknown

v 0 V0 source vector (short)
1 V1 source vector (short)
2 V2 source vector (short)
3 IR source vector (long)

cv 0 Add translation vector
1 Add back color vector
2 Unknown
3 Add no vector

lm 0 No negative limit.
1 Limit negative results to 0.

A list of common MVMVA instructions:

Name Cycles Command Description
rtv0 - cop2 0x0486012 v0 * rotmatrix
rtv1 - cop2 0x048E012 v1 * rotmatrix
rtv2 - cop2 0x0496012 v2 * rotmatrix

rtir12 - cop2 0x049E012 ir * rotmatrix
rtir0 - cop2 0x041E012 ir * rotmatrix

rtv0tr - cop2 0x0480012 v0 * rotmatrix + tr vector
rtv1tr - cop2 0x0488012 v1 * rotmatrix + tr vector
rtv2tr - cop2 0x0490012 v2 * rotmatrix + tr vector
rtirtr - cop2 0x0498012 ir * rotmatrix + tr vector

rtv0bk - cop2 0x0482012 v0 * rotmatrix + bk vector
rtv1bk - cop2 0x048A012 v1 * rotmatrix + bk vector
rtv2bk - cop2 0x0492012 v2 * rotmatrix + bk vector
rtirbk - cop2 0x049A012 ir * rotmatrix + bk vector

ll - cop2 0x04A6412 v0 * light matrix. Lower limit result to 0
llv0 - cop2 0x04A6012 v0 * light matrix
llv1 - cop2 0x04AE012 v1 * light matrix
llv2 - cop2 0x04B6012 v2 * light matrix

llvir - cop2 0x04BE012 ir * light matrix
llv0tr - cop2 0x04A0012 v0 * light matrix + tr vector
llv1tr - cop2 0x04A8012 v1 * light matrix + tr vector
llv2tr - cop2 0x04B0012 v2 * light matrix + tr vector
llirtr - cop2 0x04B8012 ir * light matrix + tr vector

llv0bk - cop2 0x04A2012 v0 * light matrix + bk vector
llv1bk - cop2 0x04AA012 v1 * light matrix + bk vector
llv2bk - cop2 0x04B2012 v2 * light matrix + bk vector
llirbk - cop2 0x04BA012 ir * light matrix + bk vector

lc - cop2 0x04DA412 v0 * color matrix, Lower limit clamped to 0
lcv0 - cop2 0x04C6012 v0 * color matrix
lcv1 - cop2 0x04CE012 v1 * color matrix
lcv2 - cop2 0x04D6012 v2 * color matrix
lcvir - cop2 0x04DE012 ir * color matrix

lcv0tr - cop2 0x04C0012 v0 * color matrix + tr vector
lcv1tr - cop2 0x04C8012 v1 * color matrix + tr vector
lcv2tr - cop2 0x04D0012 v2 * color matrix + tr vector
lcirtr - cop2 0x04D8012 ir * color matrix + tr vector

lev0bk - cop2 0x04C2012 v0 * color matrix + bk vector
lev1bk - cop2 0x04CA012 v1 * color matrix + bk vector
lev2bk - cop2 0x04D2012 v2 * color matrix + bk vector
leirbk - cop2 0x04DA012 ir * color matrix + bk vector

• Other instructions:

Name Cycles Command Description Format
sqr12 - cop2 0x0A80428 square of ir 1,19,12
sqr0 - cop2 0x0A80428 square of ir 1,31, 0
op12 - cop2 0x178000C outer product 1,19,12
op0 - cop2 0x170000C outer product 1,31, 0

gpf12 - cop2 0x198003D general purpose interpolation 1,19,12
gpf0 - cop2 0x190003D general purpose interpolation 1,31, 0
gpl12 - cop2 0x1A8003E general purpose interpolation 1,19,12
gpl0 - cop2 0x1A0003E general purpose interpolation 1,31, 0

The Motion Decoder (MDEC)
The Motion Decoder (MDEC) is a special controller chip that takes a compressed JPEG-like images and

decompresses them into 24-bit bitmapped images for display by the GPU. The MDEC can only decompress a 16x16
pixel 24-bit image at at time,called "Macroblocks" These Macrobock are encoded block that uses the YUV (YCbCr)
color scheme with Discrete Cosine Transformation (DCT) and Run Length Encoding (RLE) applied The MDEC
also performs 24 to 16 bit color conversion to prepare it for whatever color depth the GPU is in. Due to the
extremely high speed that the decompression is done, the decompressed RGB bitmaps can be combined to from
larger pictures and then ,if displayed in sequential order, to produce movies. The maximum speed is about 9,000
macroblocks per second, thereby making a movie that is 320x240 able to be played at about 30 frames per second.
MDEC data can only be sent/received via DMA channels 0 and 1. DMA channel 0 is for uncompressed data going in
and channel 1 is for retrieval of the uncompressed macroblocks. The MDEC gets controlled via the MDEC control
register at location $1f80_1820. The current status of the MDEC can be checked using the MDEC status register at
$1f80_1824. The following is a layout of the registers.

$1f80_1820 (mdec0)
write:

31 28 27 26 25 24 0
u RGB24 u STP u

Note: The first word of every data segment in a str-file is a control word written to this register.

u Unknown
RGB24 should be set to 0 for 24-bit color and to 1 for 16-bit. In 16-bit mode
STP toggles whether to set bit 15 of the decompressed data (semi-transparency)

$1f80_1824 (mdec1)
read:

31 30 29 28 27 26 25 24 23 22 0
FIFO InSync DREQ u RGB24 OutSync STP u

u Unknown
FIFO First-In-First-Out buffer state
InSync MDEC is busy decompressing data
OutSync MDEC is trasnferring data to man memory
DREQ Data Request
RGB24 0 for 24-bit color and to 1 for 16-bit. In 16-bit mode
STP toggles whether to set bit 15 of the decompressed data (semi-transparency)

write:

31 30 0
reset u

u Unknown
reset reset MDEC

MDEC Data Fomat
The MDEC uses a 'lossy' picture format simalar to that of the JPEG file format. A typical picture, before

being put into the MDEC via DMA, is of the following format;

header
macroblock

...
macroblock

footer

� The header is a 32 byte word.
31 1615 0

0x3800 sixe
 0x3800 Data ID
size size if data after the header

� The Macrobocks are further broken up as follows
Cb block
Cr block
Y0 block
Y1 block
Y2 block
Y3 block

Cb,Cr The color difference blocks
Y0,Y1,Y2,Y3 The Luminescence blocks

� Within each block the DCT informaton and RLE compressed is is stored.
15 0

DCT
RLE

...
RLE
EOD

� DCT DCT data, it has the quantization factor and the Direct Current (DC) reference
15 109 0

Q DC
Q Quantization factor (6 bits, unsigned)
DC Direct Current reference (10 bits, signed)

� RLE Run length data
15 109 0

LENGTH DATA
LENGTH The number if zeros between data (6 bits, unsigned)
DATA The data (10 bits, signed)

� EOD End Of Data(Footer)

15 0
0xfe00

Lets the MDEC know a block is done. The footer is also the same thing.

SOUND
SPU - Sound Processing Unit

Introduction.
The SPU is the unit responsible for all aural capabilities of the psx. It handles 24 voices, has a 512kb sound

buffer. It also has ADSR envelope filters for each voice and lots of other features.

The Sound Buffer
The SPU has control over a 512kb sound buffer. Data is stored compressed into blocks of 16 bytes. Each

block contains 14 packed sample bytes and two header bytes, one for the packing and one for sample end and
looping information. One such block is decoded into 28 sample bytes (= 14 16bit samples).

In the first 4 kb of the buffer the SPU stores the decoded data of CD audio after volume processing and the
sound data of voice 1 and voice 3 after envelope processing. The decoded data is stored as 16 bit signed values,
one sample per clock (44.1 khz).

Following this first 4kb are 8 bytes reserved by the system. The memory beyond that is free to store
samples, up to the reverb work area if the effect processor is used. The size of this work area depends on which type
of effect is being processed. More on that later.

Memory layout
0x00000-0x003ff CD audio left
0x00400-0x007ff CD audio right
0x00800-0x00bff Voice 1
0x00c00-0x00fff Voice 3
0x01000-0x0100f System area.
0x01008-0xxxxxx Sound data area.
0x0xxxx-0x7ffff Reverb work area.

Voices
The SPU has 24 hardware voices. These voices can be used to reproduce sample data, noise or can be used

as frequency modulator on the next voice. Each voice has it's own programmable ADSR envelope filter. The main
volume can be programmed independently for left and right output.
The ADSR envelope filter works as follows:

Ar Attack rate, which specifies the speed at which the volume increases from zero to it's maximum value, as
soon as the note on is given. The slope can be set to lineair or exponential.
Dr Decay rate specifies the speed at which the volume decreases to the sustain level. Decay is always
decreasing exponentially.
Sl Sustain level, base level from which sustain starts.
Sr Sustain rate is the rate at which the volume of the sustained note increases or decreases. This can be either
lineair or exponential.
Rr Release rate is the rate at which the volume of the note decreases as soon as the note off is given.
lvl Volume level
t Time

The overal volume can also be set to sweep up or down lineairly or exponentially from it's current value. This can be
done seperately for left and right.

SPU Operation
The SPU occupies the area 0x1f80_1c00-0x1f80_1dff. All registers are 16 bit wide.

0x1f80_1c00-0x1f80_1d7f Voice data area. For each voice there are 8 16 bit registers structured
like this:

0x1f80_1xx0-0x1f80_1xx2 Volume
(xx = 0xc0 + voice number)

0x1f80_1xx0 Volume Left
0x1f80_1xx2 Volume Right

Volume mode:
15 14 13 0
0 S VV

VV 0x0000-0x3fff Voice volume.
S 0 Phase Normal

1 Inverted

Sweep mode:
15 14 13 12 11 76 0
1 Sl Dr Ph VV

VV 0x0000-0x007f Voice volume.
Sl 0 Lineair slope

1 Exponential slope
Dr 0 Increase

1 Decrease
Ph 0 Normal phase

1 Inverted phase
In sweep mode, the current volume increases to its maximum value, or decreases to its mimimum value, according to
mode. Choose phase equal to the the phase of the current volume.

0x1f80_1xx4 Pitch
15 1413 0

Pt
Pt 0x0000-0x3fff Specifies pitch.
Any value can be set, table shows only octaves:
0x0200 -3 octaves
0x0400 -2
0x0800 -1
0x1000 sample pitch
0x2000 +1
0x3fff +2

0x1f80_1xx6 Start address of Sound
15 0

Addr
Addr Startaddress of sound in Sound buffer /8

0x1f80_1xx8 Attack/Decay/Sustain level

15 14 87 43 0
Am Ar Dr Sl

Am 0 Attack mode Linear
1 Exponential

Ar 0-7f attack rate
Dr 0-f decay rate
Sl 0-f sustain level

0x1f80_1xxa Sustain rate, Release Rate.
15 14 13 12 6 5 4 0
Sm Sd 0 Sr Rm Rr

Sm 0 sustain rate mode linear
1 exponential

Sd 0 sustain rate mode increase
1 decrease

Sr 0-7f Sustain Rate
Rm 0 Linear decrease

1 Exponential decrease
Rr 0-1f Release Rate
Note: decay mode is always Expontial decrease, and thus cannot be set.

0x1f80_1xxc Current ADSR volume
15 0

ASDRvol
ADSRvol Returns the current envelope volume when read.

0x1f80_1xxe Repeat address.
15 0

Ra
Ra 0x0000-0xffff Address sample loops to at end.
Note: Setting this register only has effect after the voice has started (ie. KeyON), else the loop address gets reset
by the sample.

SPU Global Registers

0x1f801d80 Main volume left
0x1f801d82 Main volume right
15 0

MVol
Mvol 0x0000-0xffff Main volume
Sets Main volume, these work the same as the channel volume registers. See those for details.

0x1f801d84 Reverberation depth left
0x1f801d86 Reverberation depth right

15 14 0
P Rvd

Rvd 0x0000-0x7fff Sets the wet volume for the effect.
P 0 Normal phase

1 Inverted phase

Following registers have a common layout:

first register:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0
second register:
15 8 7 6 5 4 3 2 1 0

0 c17 c16 c15 c14 c13 c12 c11 c10
c0-c17 0 Mode for channel cxx off

1 Mode for channel cxx on

0x1f80_1d88 Voice ON (0-15)
0x1f80_1d8a Voice ON (16-23)
Sets the current voice to key on. (ie. start ads)

0x1f80_1d8c Voice OFF (0-15)
0x1f80_1d8e Voice OFF (16-23)
Sets the current voice to key off.(ie. release)

0x1f80_1d90 Channel FM (pitch lfo) mode (0-15)
0x1f80_1d92 Channel FM (pitch lfo) mode (16-23)
Sets the channel frequency modulation. Uses the previous channelas modulator.

0x1f80_1d94 Channel Noise mode (0-15)
0x1f80_1d96 Channel Noise mode (16-23)
Sets the channel to noise.

0x1f80_1d98 Channel Reverb mode (0-15)
0x1f80_1d9a Channel Reverb mode (16-23)
Sets reverb for the channel. As soon as the sample ends, the reverb for that channel is turned off.

0x1f80_1d9c Channel ON/OFF (0-15)
0x1f80_1d9e Channel ON/OFF (16-23)
Returns wether the channel is mute or not.

0x1f80_1da2 Reverb work area start
15 0

MVol
Revwa 0x0000-0xffff Reverb work area start in sound buffer /8

0x1f80_1da4 Sound buffer IRQ address.
15 0

IRQa
IRQa 0x0000-0xffff IRQ address in sound buffer /8

0x1f80_1da6 Sound buffer IRQ address.
15 0

Sba
Sba 0x0000-0xffff Address in sound buffer divided by eight. Next transfer to this address.

0x1f80_1da8 SPU data
15 0

Data forwarding reg, for non DMA transfer.

0x1f80_1daa SPU control sp0

15 14 13 8 7 6 5 4 3 2 1 0
En Mu Noise Rv Irq DMA Er Cr Ee Ce

En 0 SPU off
1 SPU on

Mu 0 Mute SPU
1 Unmute SPU

Noise Noise clock frequency
Rv 0 Reverb Disabled

1 Reverb Enabled
Irq 0 Irq disabled

1 Irq enabled
DMA 00

01 Non DMA write (transfer through data reg)
10 DMA Write
11 DMA Read

Er 0 Reverb for external off
1 Reverb for external on

Cr 0 Reverb for CD off
1 Reverb for CD on

Ee 0 External audio off
1 External audio on

Ce 0 CD audio off
1 CD audio on

0x1f80_1dac SPU status
15 0

In SPU init routines this register get loaded with 0x4.

0x1f80_1dae SPU status
15 12 11 10 9 0

Dh Rd
Dh 0 Decoding in first half of buffer

1 Decoding in second half of buffer
Rd 0 Spu ready to transfer

1 Spu not ready
Some of bits 9-0 are also ready/not ready states. More on that later. Functions that wait for the SPU to be ready, wait
for bits a-0 to become 0.

0x1f80_1db0 CD volume left
0x1f80_1db2 CD volume right

15 14 0
P CDvol

CDvol 0x0000-0x7fff Set volume of CD input.
P 0 Normal phase.

1 Inverted phase.
0x1f80_1db4 Extern volume left
0x1f80_1db6 Extern volume right

15 14 0
P Exvol

Exvol 0x0000-0x7fff Set volume of External input.
P 0 Normal phase.

1 Inverted phase.

0x1dc0-&1dff Reverb configuration area

0x1f80_1dc0
0x1f80_1dc2
0x1f80_1dc4 Lowpass Filter Frequency. 7fff = max value= no filtering
0x1f80_1dc6 Effect volume 0 - 0x7fff, bit 15 = phase.
0x1f80_1dc8
0x1f80_1dca
0x1f80_1dcc
0x1f80_1dce Feedback
0x1f80_1dd0
0x1f80_1dd2
0x1f80_1dd4 Delaytime(see below)
0x1f80_1dd6 Delaytime(see below)
0x1f80_1dd8 Delaytime(see below)
0x1f80_1dda
0x1f80_1ddc
0x1f80_1dde
0x1f80_1de0 Delaytime(see below)
0x1f80_1de2
0x1f80_1de4
0x1f80_1de6
0x1f80_1de8
0x1f80_1dea
0x1f80_1dec
0x1f80_1dee
0x1f80_1df0
0x1f80_1df2
0x1f80_1df4 Delaytime
0x1f80_1df6 Delaytime
0x1f80_1df8
0x1f80_1dfa
0x1f80_1dfc
0x1f80_1dfe

Reverb
The SPU is equipped with an effect processor for reverb echo and delay type of effects. This effect

processor can do one effect at a time, and for each voice you can specify wether it should have the effect applied or
not.

The effect is setup by initializing the registers 0x1dc0 to 0x1ffe to the desired effect. I do not exactly know
how these work, but you can use the presets below.

The effect processor needs a bit of sound buffer memory to perform it's calculations. The size of this
depends on the effect type. For the presets the sizes are:
Reverb off 0x00000Hall 0x0ade0
Room 0x026c0 Space echo 0x0f6c0
Studio small 0x01f40 Echo 0x18040
Studio medium 0x04840Delay 0x18040
Studio large 0x06fe0 Half echo 03c00

The location at which the work area is location is set in register 0x1da2 and it's value is the location in the
sound buffer divided by eight. Common values are as follows:
Reverb off 0xFFFE Hall 0xEA44

Room 0xFB28 Space echo 0xE128
Studio small FC18 Echo 0xCFF8
Studio medium 0xF6F8 Delay 0xCFF8
Studio large 0xF204 Half echo 0xF880

For the delay and echo effects (not space echo or half echo) you canspecify the delay time, and feedback.
(range 0-127) Calculations are shownbelow.

When you setup up a new reverb effect, take the following steps:

-Turn off the reverb (bit 7 in sp0)
-Set Depth to 0
-First make delay & feedback calculations.
-Copy the preset to the effect registers
-Turn on the reverb
-Set Depth to desired value.

Also make sure there is the reverb work area is cleared, else you might get some unwanted noise.

To use the effect on a voice, simple turn on the corresponing bit in the channel reverb registers. Note that these get
turned off autmatically when the sample for the channel ends.

Effect presets
 copy these in order to 0x1dc0-0x1dfe

Reverb off:
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000

Room:
0x007D, 0x005B, 0x6D80, 0x54B8, 0xBED0, 0x0000, 0x0000, 0xBA80
0x5800, 0x5300, 0x04D6, 0x0333, 0x03F0, 0x0227, 0x0374, 0x01EF
0x0334, 0x01B5, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000
0x0000, 0x0000, 0x01B4, 0x0136, 0x00B8, 0x005C, 0x8000, 0x8000

Studio Small:
0x0033, 0x0025 0x70F0 0x4FA8 0xBCE0 0x4410 0xC0F0 0x9C00
0x5280 0x4EC0 0x03E4 0x031B 0x03A4 0x02AF 0x0372 0x0266
0x031C 0x025D 0x025C 0x018E 0x022F 0x0135 0x01D2 0x00B7
0x018F 0x00B5 0x00B4 0x0080 0x004C 0x0026 0x8000 0x8000

Studio Medium:
0x00B1 0x007F 0x70F0 0x4FA8 0xBCE0 0x4510 0xBEF0 0xB4C0
0x5280 0x4EC0 0x0904 0x076B 0x0824 0x065F 0x07A2 0x0616
0x076C 0x05ED 0x05EC 0x042E 0x050F 0x0305 0x0462 0x02B7
0x042F 0x0265 0x0264 0x01B2 0x0100 0x0080 0x8000 0x8000

Studio Large:
0x00E3 0x00A9 0x6F60 0x4FA8 0xBCE0 0x4510 0xBEF0 0xA680
0x5680 0x52C0 0x0DFB 0x0B58 0x0D09 0x0A3C 0x0BD9 0x0973
0x0B59 0x08DA 0x08D9 0x05E9 0x07EC 0x04B0 0x06EF 0x03D2
0x05EA 0x031D 0x031C 0x0238 0x0154 0x00AA 0x8000 0x8000

Hall:
0x01A5 0x0139 0x6000 0x5000 0x4C00 0xB800 0xBC00 0xC000
0x6000 0x5C00 0x15BA 0x11BB 0x14C2 0x10BD 0x11BC 0x0DC1
0x11C0 0x0DC3 0x0DC0 0x09C1 0x0BC4 0x07C1 0x0A00 0x06CD

0x09C2 0x05C1 0x05C0 0x041A 0x0274 0x013A 0x8000 0x8000

Space Echo:
0x033D 0x0231 0x7E00 0x5000 0xB400 0xB000 0x4C00 0xB000
0x6000 0x5400 0x1ED6 0x1A31 0x1D14 0x183B 0x1BC2 0x16B2
0x1A32 0x15EF 0x15EE 0x1055 0x1334 0x0F2D 0x11F6 0x0C5D
0x1056 0x0AE1 0x0AE0 0x07A2 0x0464 0x0232 0x8000 0x8000

Echo:
0x0001 0x0001 0x7FFF 0x7FFF 0x0000 0x0000 0x0000 0x8100
0x0000 0x0000 0x1FFF 0x0FFF 0x1005 0x0005 0x0000 0x0000
0x1005 0x0005 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
0x0000 0x0000 0x1004 0x1002 0x0004 0x0002 0x8000 0x8000

Delay:
0x0001 0x0001 0x7FFF 0x7FFF 0x0000 0x0000 0x0000 0x0000
0x0000 0x0000 0x1FFF 0x0FFF 0x1005 0x0005 0x0000 0x0000
0x1005 0x0005 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
0x0000 0x0000 0x1004 0x1002 0x0004 0x0002 0x8000 0x8000

Half Echo:
0x0017 0x0013 0x70F0 0x4FA8 0xBCE0 0x4510 0xBEF0 0x8500
0x5F80 0x54C0 0x0371 0x02AF 0x02E5 0x01DF 0x02B0 0x01D7
0x0358 0x026A 0x01D6 0x011E 0x012D 0x00B1 0x011F 0x0059
0x01A0 0x00E3 0x0058 0x0040 0x0028 0x0014 0x8000 0x8000

Delay time calculation:
Choose delay time in range 0-0x7f. rXXXX means register 0x1f80_XXXX.

r1dd4 = dt*64.5 - r1dc0
r1dd6 = dt*32.5 - r1dc2

r1dd8 = r1dda + dt*32.5
r1de0 = r1de2 + dt*32.5
r1df4 = r1df8 + dt*32.5
r1df6 = r1dfa + dt*32.5

The CD-ROM
Overview

The PSX uses a special two speed CD-ROM that can stream at 352K/sec.It uses the following registers to
control it
CDREG0 = 0x1f80_1800
CDREG1 = 0x1f80_1801
CDREG2 = 0x1f80_1802
CDREG3 = 0x1f80_1803

REGISTER FORMAT
CDREG0 write: 0 to send a command

1 to get the result
read: I/O status

bit 0 0 REG1 command send
1 REG1 data read

bit 1 0 data transfer finished
1 data transfer ready/in progress

bit 7 1 command being processed.

CDREG1 write: command
read: results

CDREG2 write: send arguments
write: 7 = flush arg buffer?

CDREG3 write: 7 = flush irq
read: hi nibble: unknown

low nibble: interrupt status

MODES FOR SETMODE
Mode bit function

M_Speed bit 7 0: normal speed 1: double speed
M_Strsnd bit 6 0: ADPCM off 1: ADPCM on
M_Size bit 5 0: 2048 byte 1: 2340 byte

M_Size2 bit 4 0:- 1: 2328 byte
M_SF bit 3 bit 3 0: Channel off 1: Channel on

M_Report bit 2 0: Report off 1: Report on
M_AutoPause bit 1 0: AutoPause off 1 1: AutoPause on

M_CDDA bit 0 0: CD-DA off 1: CD-DA on

These modes can be set using the setmode command,
 Status bits:

Play bit 7 playing CD-DA
Seek bit 6 seeking
Read bit 5 reading data sectors

ShellOpen bit 4 once shell open
SeekError bit 3 seek error detected
Standby bit 2 spindle motor rotating

Error bit 1 command error detected

These are the bit values for the status byte recieved from CD commands.
Interrupt values:

NoIntr 0x00 No interrupt
DataReady 0x01 Data Ready

Acknowledge 0x02 Command Complete
Complete 0x03 Acknowledge
DataEnd 0x04 End of Data Detected

DiskError 0x05 Error Detected

These are returned in the low nibble of CDREG3. First write a 1 to CDREG0 before reading CDREG3. When a
command is completed it returns 3. To acknowledge an irq value after you've handled it, write a 1 to CDREG0 then a
7 to both CDREG2 and CDREG3. Another interrupt may be queued, so you should check CDREG3 again if 0 or if
there's another interrupt to be handled.

Name Command Blocked Paramater Returns
Sync 0x00 - status
Nop 0x01 - status

Setloc 0x02 min,sec,sector status
Play 0x03 B - status

Forward 0x04 B - status
Backward 0x05 B - status

ReadN 0x06 B - status
Standby 0x07 B - status

Stop 0x08 B - status
Pause 0x09 B - status
Init 0x0a - status

Mute 0x0b - status
Demute 0x0c - status
Setfilter 0x0d file,channel status
Setmode 0x0e mode status
Getparam 0x0f - status,mode,file?,chan?,?,?
GetlocL 0x10 - min,sec,sector,mode,file,channel
GetlocP 0x11 - track,index,min,sec,frame,amin, asec,aframe
GetTN 0x13 - status,first,total (BCD)
GetTD 0x14 rack(BCD) status,min,sec (BCD)
SeekL 0x15 B * status
SeekP 0x16 B * status
Test 0x19 B # depends on parameter
ID 0x1A B - success,flag1,flag2,00 4 letters of ID (SCEx)

ReadS 0x1B B - status
Reset 0x1C - status

ReadTOC 0x1E B - status

* These commands' targets are set using Setloc.
Command 19 is really a portal to another set of commands.

B means blocking. These commands return an immediate result saying the command was started, but you need to
wait for an IRQ in order to get real results.

Command descriptions:
Command
Number

Command
Name

Discription

0x00 Sync Command does not succeed until all other commands complete. This can be used
for synchronization - hence the name.

0x01 Nop Does nothing; use this if you just want the status.
0x02 Setloc This command, with its parameters, sets the target for commands with a * for their

parameter list.
0x03 Play Plays audio sectors from the last point seeked. This is almost identical to

CdlReadS, believe it or not. The main difference is that this does not trigger a
completed read IRQ. CdlPlay may be used on data sectors However, all sectors
from data tracks are treated as 00, so no sound is played. As CdlPlay is reading, the
audio data appears in the sector buffer, but is not reliable. Game Shark
"enhancement CDs" for the 2.x and 3.x versions used this to get around the PSX
copy protection.

0x04 Forward Seek to next track ?
0x05 Backward Seek to beginning of current track, or previous track if early in current track (like a

CD player's back button)
0x06 ReadN Read with retry. Each sector causes an IRQ (type 1) if ModeRept is on (I think).

ReadN and ReadS cause errors if you're trying to read a non-PSX CD or audio CD
without a mod chip.

0x07 Standby CD-ROM aborts all reads and playing, but continues spinning. CD-ROM does not
attempt to keep its place.

0x08 Stop Stops motor. Official way to restart is 0A, but almost any command will restart it.
0x09 Pause Like Standby, except the point is to maintain the current location within reasonable

error.
0x0A Init Multiple effects at once. Setmode = 00, Standby, abort all commands.
0x0B Mute Turn off CDDA stream to SPU.
0x0C Demute Turn on CDDA streaming to SPU.
0x0D Setfilter Automatic ADPCM (CD-ROM XA) filter ignores sectors except those which have

the same channel and file (parameters) in their subheader area. This is the
mechanism used to select which of multiple songs in a single XA to play. Setfilter
does not affect actual reading (sector reads still occur for all sectors).

0x0E Setmode Sets parameters such as read mode and spin speed. See chart above the command
list.

0x0F Getparam returns status, mode, file, channel, ?, ?
0x10 GetlocL Retrieves first 6 (8?) bytes of last read sector (header) This is used to know where

the sector came from, but is generally pointless in 2340 byte read mode. All results
are in BCD ($12 is considered track twelve, not eighteen) Command may execute
concurrently with a read or play (GetlocL returns results immediately).

0x11 GetlocP Retrieves 8 of 12 bytes of sub-Q data for the last-read sector. Same purpose as
GetlocL, but more powerful, and works while playing audio. All results are in
BCD. See note

0x13 GetTN Get first track number and number of tracks in the TOC.
0x14 GetTD Gets start of specified track (does it return sector??)
0x15 SeekL Seek to Setloc's location in data mode (can only seek to data sectors, but is accurate

to the sector)
0x16 SeekP Seek to Setloc's location in audio mode (can seek to any sector, but is only accurate

to the second)

0x19 Test This function has many subcommands that are completely different. See ending
notes

NOTES
� the sub-Q fromat is as follows
 track: track number ($AA for lead-out area)
 index: index number (INDEX lines in CUE sheets)
 min: minute number within track
 sec: second number within track
 frame: sector number within "sec" (0 to 74)
 amin: minute number on entire disk
 asec: second number on entire disk
 aframe: sector number within "asec" (0 to 74)

� Test subcommands
1A ID
Returns copy protection status. StatError for invalid data CD, StatStandby for valid PSX CD or audio CD. The
following bits I'm unsure about, but I think the 3rd byte has $80 bit for "CD denied" and $10 bit for "import". $80 =
copy, $90 = denied import, $10 = accepted import (Yaroze only). The 5th through 8th bytes are the SCEx ASCII
string from the CD.
1B ReadS
Read without automatic retry.
1C Reset
Same as opening and closing the drive door.
1E ReadTOC
Reread the Table of Contents without reset.

To send a command:

- First send any arguments by writing 0 to CDREG0, then all arguments sequentially to CDREG2

- Then write 0 to CDREG0, and the command to CDREG1.

To wait for a command to complete:

- Wait until a CDrom irq occurs (bit 3 of the interrupt regs) The cause of the cdrom irq is in the low nibble of
CDREG3. This is usually 3 on a succesful comletion. Failure to complete the command will result in a 5. If you
don't wish to use irq's you can just check for the low nibble of cdreg3 to become something other than 0, but make
sure it doesn't get cleared in any irq setup by the bios or some such.

To Get the results

- Write a 1 to CDREG0, then read CDREG0, If bit 5 is set, read a return value from CDREG1, then read CDREG0
again repeat until bit 5 goes low.

To Clear the irq

- After command completion the irq cause should be cleared, do this by writing a 1 to CDREG0 then 7 to CDREG2
and CDREG3. My guess is that the write to CDREG2 clears the arguments previously set from some buffer. Note
that irq's are queued, and if you clear the current, another may come up directly..

To init the CD:

-Flush all irq's
-CDREG0=0

-CDREG3=0
-Com_Delay=4901 ($1f801020)
-Send 2 NOP's
-Command $0a, no args.
-Demute

To set up the cd for audio playback

CDREG0=2
CDREG2=$80
CDREG3=0
CDREG0=3
CDREG1=$80
CDREG2=0
CDREG3=$20

Also don't forget to init the SPU. (CDvol and CD enable especially)

You should not send some commands while the CD is seeking. (ie. status returns with bit 6 set.) Thing is that the
status only gets updated after a new command. I haven't tested this for other command, but for the play command
($03) you can just keep repeating the command and checking the status returned by that, for bit 6 to go low(and bit 7
to go high in this case) If you don't and try to do a getloc directly after the play command reports it's done, the cd will
stop. (I guess the cd can't get it's current location while it's seeking, so the logic stops the seek to get an exact fix, but
never restarts..)

19 subcommands.

For one reason or another, there is a counter that counts the number of SCEx strings received by the CD-ROM
controller.

Be aware that the results for these commands can exceed 8 bytes.

0x04 Read SCEx counter (returned in 1st byte?)
0x05 Reset SCEx counter. This also sets 1A's SCEx response to 00 00

00 00, but doesn't appear to force a protection failure.
0x20 Returns an ASCII string specifying where the CD-ROM firmware is

intended to be used ("for Japan", "for U/C").
0x22 Returns a chip number inside the PSX in use.
0x23 Returns another chip number.
0x24 Returns yet another chip number. Same as 22's on some PSXs

Root Counters
Overview
Root counters are timers in the PSX. There are 4 root counters.

Counter Base address Synced to
0 0x1f80_1100 pixelclock
1 0x1f80_1110 horizontal retrace
2 0x1f80_1120 1/8 system clock
3 vertical retrace

Each have three registers, one with the current value, one with the counter mode, and one with a target value.

0x11n0 Count [read]
31 1615 0

Garbage Count

Count Current count value, 0x0000-0xffff
Upper word seems to contain only garbage.

0x11n4 Mode [read/write]

31 10 9 8 7 6 5 4 3 2 1 0
Garbage Div Clc Iq2 Iq1 Tar En

En 0 Counter running
1 Counter stopped (only counter 2)

Tar 0 Count to $ffff
1 Count to value in target register

Iq1 Set both for IRQ on target reached.
Iq2
Clc 0 System clock (it seems)

1 Pixel clock (counter 0)
Horizontal retrace (counter 1)

Div 0 System clock (it seems)
1 1/8 * System clock (counter 2)

When Clc and Div of the counters are zero, they all run at the same speed. This speed seems to be about 8 times the
normal speed of root counter 2, which is specified as 1/8 the system clock.
Bits 10 to 31 seem to contain only garbage.

0x11n8 Count [read/write]
31 1615 0

Garbage Target

Target Target value, 0x0000-0xffff
Upper word seems to contain only garbage.

Quick step-by-step:

To set up an interrupt using these counters you can do the following:
1 - Reset the counter. (Mode = 0)
2 - Set its target value, set mode.
3 - Enable corresponding bit in the interrupt mask register ($1f801074)
 bit 3 = Counter 3 (Vblank)
 bit 4 = Counter 0 (System clock)
 bit 5 = Counter 1 (Hor retrace)
 bit 6 = Counter 2 (Pixel)
4 - Open an event. (Openevent bios call - $b0, $08)
 With following arguments:
 a0-Rootcounter event descriptor or'd with the counter number.
 ($f2000000 - counter 0, $f2000001 - counter 1,$f2000002 - counter 2, $f2000003 - counter 3)
 a1-Spec = $0002 - interrupt event.
 a2-Mode = Interrupt handling ($1000)
 a3-Pointer to your routine to be excuted.
 The return value in V0 is the event identifier.

5 - Enable the event, with the corresponding bioscall ($b0,$0c) with the identifier as argument.

6 - Make sure interrupts are enabled. (Bit 0 and bit 10 of the COP0 status register must be set.)

Your handler just has to restore the registers it uses, and it should terminate with a normal jr ra.

To turn off the interrupt, first call disable event ($b0, $0d) and then close it using the Close event call ($b0,$09) both
with the event number as argument.

Controllers

Overview
The PSX uses a 9 pin device connecter for use with the PSX controller. The controller port is exactly the

same electricly as the memory card port. The only difference is the device driver that uses it, and it's external port
shape. The controllers are accessed via the InitPAD StartPAD, StopPAD, PAD_init, and PAD_dr BIOS commands.
These are covered in detail within the BIOS section of this document. The controller is a type of "smart device" that
communicates data serially via the port. Port informaton is as follows.

Pin signal dir active description
1 dat in pos data from pad or memory-card
2 cmd out pos command data to pad or memory-card
3 +7V -- -- +7.6V power source for CD-ROM drive
4 gnd -- --
5 +3V -- -- +3.6V power source for system
6 sel out neg select pad or memory-card
7 clk out -- data shift clock
8 -- -- -- N.A.
9 ack in neg acknowladge signal from pad or memory-card

� 1) direction(in/out) is based from PSX
� 2) metal edge in pad connecter is connected pin 4 and sheald calbe.
� 3) signal SEL in PAD1, PAD2 is separated.

Comminucation timing chart
Timing is compatible in the PAD as well as the Memory-card.

Overview
____ _____

SEL- |__|
______ ____ ____ ____ ____ _________

CLK |||||||| |||||||| |||||||| |||||||| ||||||||

CMD X 01h XXXX 42h XXXX 00h XXXX 00h XXXX 00h XXXX
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_____________________________________________________________

DAT -----XXXXXXXXXXXXX ID XXXX 5Ah XXXX key1 XXXX key2 XXXX-----
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ACK- ---------------|_|---------|_|---------|_|---------|_|-----------------

Top command. First comminucation(device check)

SEL- |__
______ _ _ _ _ _ _ _ __________________ _ _ _ _

CLK |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_|

__________ ___
CMD |__| |_______

DAT -----XX |___________

ACK- --|___|--------------------

X = none, - = Hi-Z

� 0x81 is memory-card, 0x01 is standard-pad at top command.
� serial data transfer is LSB-First format.
� data is down edged output, PSX is read at up edge in shift clock.
� PSX expects No-connection if not returned Acknoledge less than 100 usec.
� clock pluse is 250KHz.
� no need Acknoledge at last data.
� Acknoledge signal width is more than 2 usec.
� time is 16msec between SEL from previous SEL.
� SEL- for memory card in PAD access.

Communication format with the Pad
After the command 0x01h is sent to the pad drom the system, the pad

replies with a one-byte PAD ID(0x5A), then it will send a 2-byte key code and
extended code.

Normal Pad timing flow ->
10000000 1000010 1011010 1234567 1234567

CMD 01h 42h 00h 00h 00h
xxxxxxxx 10000010 10100101 1234567 1234567

DAT ---- 41h 5ah SW.1 SW.2

data contents of normal PAD.(push low)
byte b7 b6 b5 b4 b3 b2 b1 b0

0 --- N.A.
1 0x41 'A'
2 0x5a 'Z'
3 LEFT DOWN RGHT UP STA 1 1 SEL
4 Square X O Triangle R1 L1 R2 L2

data contents NEGCON(NAMCO analog controler, push low)
byte b7 b6 b5 b4 b3 b2 b1 b0

0 ----- N.A.
1 0x23
2 0x5a 'Z'
3 LEFT DOWN RGHT UP STA 1 1 1
4 1 1 A B R 1 1 1
5 handle data right:0x00, center:0x80
6 I button ADC data (7bit unsigned) 00h to 7Fh
7 II button ADC data 00h to 7Fh
8 L button ADC data 00h to 7Fh

unknown data bit length in +6 to +8 ADC datas. (7 or 8 may be)

mouse data contents(push low)
byte b7 b6 b5 b4 b3 b2 b1 b0

0 ----- N.A.
1 0x12
2 0x5a 'Z'
3 1 1 1 1 1 1 1 1
4 1 1 1 1 LEFT RGHT 0 0
5 V moves 8bitSigned up:+,dwn:-,stay:00
6 H moves 8bitSigned up:+,dwn:-,stay:00

Memory cards

Memory Card Format

The memory card for the PSX is 128 kilobytes of non-volatile RAM. This is split into 16 blocks each
containing 8 kilobytes each. The very first block is is a header block used as a directory and file allocation table
leaving 15 blocks left over for data storage.

The data blocks contains the program data file name, block name, icon, and other critical information. The
PSX accesses the data via a "frame" method. Each block is split into 64 frames, each 128 bytes. The first frame
(frame 0) is the file name, frames 1 to 3 contain the icon, (each frame of animation taking up one frame) leaving the
rest of the frames for save data.

Terms and Data Format

This is the format of the various objects within the memory card.

File Name
Country code(2 bytes)+Product number(10 bytes)+identifier(8 bytes) An example of a product number is

SCPS-0000. The identifier is a variation on the name of the game, for example FF8 will be FF0800, FF0801. The
format if the product is 4 characters, a hyphen, and then 5 characters. The actula characters don't really matter. With
a PocketStation program, the product ID is a monochrome icon, a hyphen and the later part containing a "P"

Country Code
In Japan the code is BI, Europe is BE, and America is BA. An American PSX and use memory saves with

the BI country code.

Title
The title is in Shift-JIS format with a max if 32 characters. ASCII can be used as ASCII is a subset of Shift-

JIS.

XOR Code
This is a checksum. Each byte is XORed one by one and the result is stored. Complies with the checksum

protocol.

Link
This is a sequence of 3 bytes to link blocks togeather to form one continuous data block.

Data Size
Total Memory 128KB = 13,1072 bytes= 0x20000bytes
1 Block 8KB = 8192 bytes = 0x2000 bytes
1 Frame 128 bytes = 0x80 bytes

Header Frame
+0x00 'M' (0x4D)
+0x01 'C' (0x43)
+0x02 - 0x7E Unused (0x00)
+0x7F XOR code (usually 0x0E)

Directory Frame
+0x00 Availible bocks

 upper 4 bits
 A - Availible
 5 - partially used
 F - Unusable
 Lowe 4 bits
 0 - Unused
 1 - There is no link, but one will be here later
 2 - mid link block
 3 - terminiting link block
 F - unusable
Example
 A0 - Open block
 51 - In use, there will be a link in the next block
 52 - In use, this is in a link and will link to another
 53 - In use, this is the last in the link
 FF - Unusable

+0x01 - 0x03 00 00 00
When it's reservered it's FF FF FF

+0x04 - 0x07 Use byte
 00 00 00 - Open block middle link block, or end link block
 Block * 0x2000 - No link, but will be a link
 (00 20 00 - one blocks will be used)
 (00 40 00 - two blocks will be used)
 (00 E0 01 - 15 blocks will be used)

+0x08-0x09 Link order Block 0-14
 If the bock isn't in a link or if it's the last link in the line the line, it's 0xffff

+0x0A-0x0B Country Code (BI, BA, BE)
+0x0C+0x15 Product Code (AAAA-00000)

 Japan SLPS, SCPS (from SCEI)
 America SLUS, SCUS (from SCEA)
 Europe SLES, SCES (from SCEE)

+0x16-0x1D Identifier
 This Number is created unique to the current game played. Meaning the first time a game is
saved on the card, every subsequent save has the same identifier, but it a new game is started from the
beginning, that will have a different idenitifier.

+0x1E-0x7E Unused
0x7F XOR Code

THE FOLLOWING DATA REPEATS FOR THE NEXT 15 BLOCKS, THEN BLOCK 1 STARTS

Block Structure
Frame 0
Title Frame
0x00
'S' (0x53)
0x01
'C' (0x43)
+0x02
Icon Display Flag
00...No icon
11...Icon has 1 frame of animation (static)
12...Icon has 2 frames
13...Icon has 3 frames
+0x03
Block Number (1-15)
0x04 - 0x43

Title
This is the title in Shift-JIS format, it allows for 32 characters to be written
0x44 - 0x5F
Reserved(00h)
This is used for the Pocketstation.
0x60 - 0x7F
Icon 16 Color Palette Data
Frame 1
Frame 3
Icon Frame
0x00 - 0x7F
Icon Bitmap
1 Frame of animaton == 1 Frame of data.
If there is no Icon for this bock, it's data instead.
Frame 4
Data Frame
+0x00 - 0x7F
Save Data

Link Block
Frame 1 +0x00 - 0x7F Save Data

Data Transmission
Data is trasmitted with exactly the same protocol as the Pad data is trasmitted/revived. The pin out are

exactly the same as well, the houseing, however is a different shape.

Serial I/O
The PSX has a 8 pin serial adapter that uses a non-standars protocol for data transmission and receiving.

The pin outs are pictured here.

The pot speed is able to go up to a maximum of 256K bps. Normally it's used at 56K. On connecton
problems the port will attempt a reconnect, but may not fall back on a slower speed. The link cable is wired is such.

1 <-> 4
2 NC
3 <-> 6
4 <-> 1
5 <-> 8
6 <-> 3
7 <-> 7
8 <-> 5

The pins are like this (looking into the link cable connector looking into the pins of the cable connector) and the
connector facing up) :

CABLE

// \\
// \\

________________ ________________
/ UP \ / UP \
------------------ -------------------

LEFT |1 2 3 4 5 6 7 8 | RIGHT LEFT | 1 2 3 4 5 6 7 8 | RIGHT
------------------ -------------------

Parallel I/O

Overview
The Parallel prt is is a sort of a faux name. It's really an expantion port. Any device connected to this port

will have access to everything on the local bus. The address that the PIO port resides on is from 0x1f00_0000-
0x1f00_ffff The following is a pin diagram of the PIO.

Appendix A
Number systems

The Hexadecimal system is as follows
Decimal Hexadecimal

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E
31 1F
32 20
33 21
... ...

252 FC
253 FD
254 FE
255 FF

Appendix B
BIOS calls

1st column - Address to call
2nd column - Value of $t1 when calling
3rd column - Name of the function

Arguments whenever needed are passed by $a0,1,2,3 and at $sp+0x10 when more
than 4 arguments.

0x00a0 - 0x0000 - int open(char *name , int mode)
0x00a0 - 0x0001 - int lseek(int fd , int offset , int whence)
0x00a0 - 0x0002 - int read(int fd , char *buf , int nbytes)
0x00a0 - 0x0003 - int write(int fd , char *buf , int nbytes)
0x00a0 - 0x0004 - close(int fd)
0x00a0 - 0x0005 - int ioctl(int fd , int cmd , int arg)
0x00a0 - 0x0006 - exit()
0x00a0 - 0x0007 - sys_b0_39()
0x00a0 - 0x0008 - char getc(int fd)
0x00a0 - 0x0009 - putc(char c , int fd)
0x00a0 - 0x000a - todigit
0x00a0 - 0x000b - double atof(char *s)
0x00a0 - 0x000c - long strtoul(char *s , char **ptr , int base)
0x00a0 - 0x000d - unsigned long strtol(char *s , char **ptr , int base)
0x00a0 - 0x000e - int abs(int val)
0x00a0 - 0x000f - long labs(long lval)
0x00a0 - 0x0010 - long atoi(char *s)
0x00a0 - 0x0011 - int atol(char *s)
0x00a0 - 0x0012 - atob
0x00a0 - 0x0013 - int setjmp(jmp_buf *ctx)
0x00a0 - 0x0014 - longjmp(jmp_buf *ctx , int value)
0x00a0 - 0x0015 - char *strcat(char *dst , char *src)
0x00a0 - 0x0016 - char *strncat(char *dst , char *src , int n)
0x00a0 - 0x0017 - int strcmp(char *dst , char *src)
0x00a0 - 0x0018 - int strncmp(char *dst , char *src , int n)
0x00a0 - 0x0019 - char *strcpy(char *dst , char *src)
0x00a0 - 0x001a - char *strncpy(char *dst , char *src , int n))
0x00a0 - 0x001b - int strlen(char *s)
0x00a0 - 0x001c - int index(char *s , int c)
0x00a0 - 0x001d - int rindex(char *s , int c)
0x00a0 - 0x001e - char *strchr(char *c , int c)
0x00a0 - 0x001f - char *strrchr(char *c , int c)
0x00a0 - 0x0020 - char *strpbrk(char *dst , *src)
0x00a0 - 0x0021 - int strspn(char *s , char *set)
0x00a0 - 0x0022 - int strcspn(char *s , char *set)
0x00a0 - 0x0023 - strtok(char *s , char *set)
0x00a0 - 0x0024 - strstr(char *s , char *set)
0x00a0 - 0x0025 - int toupper(int c)
0x00a0 - 0x0026 - int tolower(int c)
0x00a0 - 0x0027 - void bcopy(void *src , void *dst , int len)
0x00a0 - 0x0028 - void bzero(void *ptr , int len)
0x00a0 - 0x0029 - int bcmp(void *ptr1 , void *ptr2 , int len)

0x00a0 - 0x002a - memcpy(void *dst , void *src , int n)
0x00a0 - 0x002b - memset(void *dst , char c , int n)
0x00a0 - 0x002c - memmove(void *dst , void *src , int n)
0x00a0 - 0x002d - memcmp(void *dst , void *src , int n)
0x00a0 - 0x002e - memchr(void *s , int c , int n)
0x00a0 - 0x002f - int rand()
0x00a0 - 0x0030 - void srand(unsigned int seed)
0x00a0 - 0x0031 - void qsort(void *base , int nel , int width , int (*cmp)*void *,void *))
0x00a0 - 0x0032 - double strtod(char *s , char *endptr)
0x00a0 - 0x0033 - void *malloc(int size)
0x00a0 - 0x0034 - free(void *buf)
0x00a0 - 0x0035 - void *lsearch(void *key , void *base , int belp , int width , int (*cmp)(void * , void *))
0x00a0 - 0x0036 - void *bsearch(void *key , void *base , int nel , int size , int (*cmp)(void * , void *))
0x00a0 - 0x0037 - void *calloc(int size , int n)
0x00a0 - 0x0038 - void *realloc(void *buf , int n)
0x00a0 - 0x0039 - InitHeap(void *block , int n)
0x00a0 - 0x003a - _exit()
0x00a0 - 0x003b - char getchar(int fd)
0x00a0 - 0x003c - putchar(char c , int fd)
0x00a0 - 0x003d - char *gets(char *s)
0x00a0 - 0x003e - puts(char *s)
0x00a0 - 0x003f - printf(char *fmt , ...)
0x00a0 - 0x0041 - LoadTest(char *name , XF_HDR *header)
0x00a0 - 0x0042 - Load(char *name , XF_HDR *header)
0x00a0 - 0x0043 - Exec(struct EXEC *header , int argc , char **argc)
0x00a0 - 0x0044 - FlushCache()
0x00a0 - 0x0045 - void InstallInterruptHandler()
0x00a0 - 0x0046 - GPU_dw
0x00a0 - 0x0048 - int SetGPUStatus(int status)
0x00a0 - 0x0049 - GPU_cw
0x00a0 - 0x004a - GPU_cwb (not sure)
0x00a0 - 0x004d - int GetGPUStatus()
0x00a0 - 0x0049 - GPU_sync
0x00a0 - 0x0051 - LoadExec(char *name , int , int)
0x00x0 - 0x0052 - GetSysSp()
0x00a0 - 0x0054 - _96_init()
0x00a0 - 0x0055 - _bu_init()
0x00a0 - 0x0056 - _96_remove()
0x00a0 - 0x0057 - return 0 (it only does this)
0x00a0 - 0x0058 - return 0 (it only does this)
0x00a0 - 0x0059 - return 0 (it only does this)
0x00a0 - 0x005a - return 0 (it only does this)
0x00a0 - 0x005b - dev_tty_init
0x00a0 - 0x005c - dev_tty_open
0x00a0 - 0x005e - dev_tty_ioctl
0x00a0 - 0x005f - dev_cd_open
0x00a0 - 0x0060 - dev_cd_read
0x00a0 - 0x0061 - dev_cd_close
0x00a0 - 0x0062 - dev_cd_firstfile
0x00a0 - 0x0063 - dev_cd_nextfile
0x00a0 - 0x0064 - dev_cd_chdir
0x00a0 - 0x0065 - dev_card_open
0x00a0 - 0x0066 - dev_card_read
0x00a0 - 0x0067 - dev_card_write
0x00a0 - 0x0068 - dev_card_close

0x00a0 - 0x0069 - dev_card_firstfile
0x00a0 - 0x006a - dev_card_nextfile
0x00a0 - 0x006b - dev_card_erase
0x00a0 - 0x006c - dev_card_undelete
0x00a0 - 0x006d - dev_card_format
0x00a0 - 0x006e - dev_card_rename
0x00a0 - 0x0070 - _bu_init
0x00a0 - 0x0071 - _96_init
0x00a0 - 0x0072 - _96_remove
0x00a0 - 0x0078 - _96_CdSeekL
0x00a0 - 0x007c - _96_CdGetStatus
0x00a0 - 0x007e - _96_CdRead
0x00a0 - 0x0085 - _96_CdStop
0x00a0 - 0x0096 - AddCDROMDevice()
0x00a0 - 0x0097 - AddMemCardDevice()
0x00a0 - 0x0098 - DisableKernelIORedirection()
0x00a0 - 0x0099 - EnableKernelIORedirection()
0x00a0 - 0x009c - GetConf(int Event , int TCB , int Stack)
0x00a0 - 0x009d - GetConf(int *Event , int *TCB , int *Stack)
0x00a0 - 0x009f - SetMem(int size)
0x00a0 - 0x00a0 - _boot
0x00a0 - 0x00a1 - SystemError
0x00a0 - 0x00a2 - EnqueueCdIntr
0x00a0 - 0x00a3 - DequeueCdIntr
0x00a0 - 0x00a5 - ReadSector(count,sector,buffer)
0x00a0 - 0x00a6 - get_cd_status ??
0x00a0 - 0x00a7 - bufs_cb_0
0x00a0 - 0x00a8 - bufs_cb_1
0x00a0 - 0x00a9 - bufs_cb_2
0x00a0 - 0x00aa - bufs_cb_3
0x00a0 - 0x00ab - _card_info
0x00a0 - 0x00ac - _card_load
0x00a0 - 0x00ad - _card_auto
0x00a0 - 0x00ae - bufs_cb_4
0x00a0 - 0x00b2 - do_a_long_jmp()
0x00a0 - 0x00b4 - (sub_function)
 0 - u_long GetKernelDate (date is in 0xYYYYMMDD BCD format)
 1 - u_long GetKernel???? (returns 3 on cex1000 and cex3000)
 2 - char *GetKernelRomVersion()
 3 - ?
 4 - ?
 5 - u_long GetRamSize() (in bytes)
 6 -> F - ??

0x00b0 - 0x0000 - SysMalloc (to malloc kernel memory)
0x00b0 - 0x0007 - DeliverEvent(class , event)
0x00b0 - 0x0008 - OpenEvent(class , spec , mode , func) (source code is corrected)
0x00b0 - 0x0009 - CloseEvent(event)
0x00b0 - 0x000a - WaitEvent(event)
0x00b0 - 0x000b - TestEvent(event)
0x00b0 - 0x000c - EnableEvent(event)
0x00b0 - 0x000d - DisableEvent(event)
0x00b0 - 0x000e - OpenTh
0x00b0 - 0x000f - CloseTh
0x00b0 - 0x0010 - ChangeTh

0x00b0 - 0x0012 - InitPad
0x00b0 - 0x0013 - StartPad
0x00b0 - 0x0014 - StopPAD
0x00b0 - 0x0015 - PAD_init
0x00b0 - 0x0016 - u_long PAD_dr()
0x00b0 - 0x0017 - ReturnFromException
0x00b0 - 0x0018 - ResetEntryInt
0x00b0 - 0x0019 - HookEntryInt
0x00b0 - 0x0020 - UnDeliverEvent(class , event)
0x00b0 - 0x0032 - int open(char *name,int access)
0x00b0 - 0x0033 - int lseek(int fd,long pos,int seektype)
0x00b0 - 0x0034 - int read(int fd,void *buf,int nbytes)
0x00b0 - 0x0035 - int write(int fd,void *buf,int nbytes)
0x00b0 - 0x0036 - close(int fd)
0x00b0 - 0x0037 - int ioctl(int fd , int cmd , int arg)
0x00b0 - 0x0038 - exit(int exitcode)
0x00b0 - 0x003a - char getc(int fd)
0x00b0 - 0x003b - putc(int fd,char ch)
0x00b0 - 0x003c - char getchar()
0x00b0 - 0x003d - putchar(char ch)
0x00b0 - 0x003e - char *gets(char *s)
0x00b0 - 0x003f - puts(char *s)
0x00b0 - 0x0040 - cd
0x00b0 - 0x0041 - format
0x00b0 - 0x0042 - firstfile
0x00b0 - 0x0043 - nextfile
0x00b0 - 0x0044 - rename
0x00b0 - 0x0045 - delete
0x00b0 - 0x0046 - undelete
0x00b0 - 0x0047 - AddDevice (used by AddXXXDevice)
0x00b0 - 0x0048 - RemoveDevice
0x00b0 - 0x0049 - PrintInstalledDevices
0x00b0 - 0x004a - InitCARD
0x00b0 - 0x004b - StartCARD
0x00b0 - 0x004c - StopCARD
0x00b0 - 0x004e - _card_write
0x00b0 - 0x004f - _card_read
0x00b0 - 0x0050 - _new_card
0x00b0 - 0x0051 - Krom2RawAdd
0x00b0 - 0x0054 - long _get_errno(void)
0x00b0 - 0x0055 - long _get_error(long fd)
0x00b0 - 0x0056 - GetC0Table
0x00b0 - 0x0057 - GetB0Table
0x00b0 - 0x0058 - _card_chan
0x00b0 - 0x005b - ChangeClearPad(int)
0x00b0 - 0x005c - _card_status
0x00b0 - 0x005d - _card_wait

0x00c0 - 0x0000 - InitRCnt
0x00c0 - 0x0001 - InitException
0x00c0 - 0x0002 - SysEnqIntRP(int index , long *queue)
0x00c0 - 0x0003 - SysDeqIntRP(int index , long *queue)
0x00c0 - 0x0004 - get_free_EvCB_slot()
0x00c0 - 0x0005 - get_free_TCB_slot()
0x00c0 - 0x0006 - ExceptionHandler

0x00c0 - 0x0007 - InstallExceptionHandlers
0x00c0 - 0x0008 - SysInitMemory
0x00c0 - 0x0009 - SysInitKMem
0x00c0 - 0x000a - ChangeClearRCnt
0x00c0 - 0x000b - SystemError ???
0x00c0 - 0x000c - InitDefInt
0x00c0 - 0x0012 - InstallDevices
0x00c0 - 0x0013 - FlushStdInOutPut
0x00c0 - 0x0014 - return 0
0x00c0 - 0x0015 - _cdevinput
0x00c0 - 0x0016 - _cdevscan
0x00c0 - 0x0017 - char _circgetc(struct device_buf *circ)
0x00c0 - 0x0018 - _circputc(char c , struct device_buf *circ)
0x00c0 - 0x0019 - ioabort(char *str)
0x00c0 - 0x001b - KernelRedirect(int flag)
0x00c0 - 0x001c - PatchA0Table

There are 3 more i know that arent called the same way as above:

MiPS R3000:

Exception() {
li $a0,0
syscall
}

EnterCriticalSection() {
li $a0,1
syscall
}

ExitCriticalSection() {
li $a0,2
syscall
}

Appendix C
GPU command listing

Overview of packet commands:

 0x01 clear cache
 0x02 frame buffer rectangle draw
 0x20 monochrome 3 point polygon
 0x24 textured 3 point polygon
 0x28 monochrome 4 point polygon
 0x2c textured 4 point polygon
 0x30 gradated 3 point polygon
 0x34 gradated textured 3 point polygon
 0x38 gradated 4 point polygon
 0x3c gradated textured 4 point polygon
 0x40 monochrome line
 0x48 monochrome polyline
 0x50 gradated line
 0x58 gradated line polyline
 0x60 rectangle
 0x64 sprite
 0x68 dot
 0x70 8*8 rectangle
 0x74 8*8 sprite
 0x78 16*16 rectangle
 0x7c 16*16 sprite
 0x80 move image in frame buffer
 0xa0 send image to frame buffer
 0xc0 copy image from frame buffer
 0xe1 draw mode setting
 0xe2 texture window setting
 0xe3 set drawing area top left
 0xe4 set drawing area bottom right
 0xe5 drawing offset
 0xe6 mask setting

Appendix D

Glossary of terms

PSX Playstation
SCEI Sony Computer Entertainment Incorporated (Sony of Japan)
SCEA Sony Computer Entertainment America (Sony of America)
SCEE Sony Computer Entertainment Europe (Sony of Europe)
GTE Geometry Transformation Engine
GPU Graphics Processing Unit
CPU Central Processing Unit
MDEC Motion DEcoding Chip
PIO Parallel Input/Output port
SPU Sound Processing Unit
BIOS Basic Input/Output System

Appendix E

Works cited – Bibliography

History of the Sony PlayStation taken from http://www.psxpower.com

The IDTR3051 ™ , R3052 ™ RISController ™ Hardware User's Manual Revision 1.4 July 15, 1994
©1992, 1994 Integrated Device Technology, Inc.

System.txt, cdinfo.txt, gpu.txt, spu.txt, gte.txt
doomed@c64.org http://psx.rules.org

gte-lite.txt
http://www.in-brb.de/~creature/

MDEC data from
jlo@ludd.luth.se and various people at PSXDEV mailing list
http://www.geocities.co.jp/Playtown/2004/
bero@geocities.co.jp

Memcard/PAD Data
HFB03536@nifty-serve.or.jp

PIO
bitmaster@bigfoot.com

Syscall
sgf22@cam.ac.uk

Mem card format: E-nash
http://www.vbug.or.jp/users/e-nash/
e-nash@i.am

Plus the many more at PSXDEV mailing list that helped ^_^

Exitcode 84905

	Joshua Walker
	
	Data cache
	32 bit architecture
	General Purpose Registers
	
	INSTRUCTION SET SUMMARY

	Load and Store Instructions
	Instruction
	Computational Instructions
	
	
	ALU Immediate Operations
	Instruction
	Shift Operations
	Multiply and Divide Operations

	Jump and Branch Instructions
	
	Jump Instructions
	Branch Instructions
	Special Instructions

	Co-processor Instructions
	
	Instruction

	Instruction
	R3000A OPCODE ENCODING

	The PSX Memory Map
	Virtual Memory
	Virtual to physical memory translation
	Cop0, The System Control Coprocessor
	Cop0 Registers
	Returning to the TLB
	The Index Register
	The Random Register
	TBL High and TBL Low Registers
	Exception
	TLB Miss
	Returning to the Cop0
	The Cause Register
	The EPC (Exception Program Counter) Register
	BADV Register
	Context Register
	The Status Register
	PRID Register
	EXCEPTION VECTOR LOCATIONS
	
	
	Reset
	Reset

	Exception Priority
	Breakpoint Management
	DCIC
	BDAM
	BPCM
	DMA Primary Control Register (DPCR)		0x1f80_10f0
	DMA Memory Address Register (D_MADR)	0x1f80_10n0
	DMA Block Control Register (D_BCR)		0x1f80_10n4
	DMA Interrupt Control Register (DICR)		0x1f80_10f4
	The Frame Buffer
	Textures
	BGR
	Drawing Environment
	GPU operation
	Control/Status Register 			0x1f80_1814

	W0 	W1
	DMA GPU -> CPU
	Type
	
	
	Type
	Type
	Type

	Abbreviations in packet list
	Packet list
	GPU command & Transfer packets
	Draw mode/environment setting packets
	DMA and the GPU
	DMA Second Memory Address Register (D2_MADR)	0x1f80_10a0
	DMA Second Block Control Register (D2_BCR)		0x1f80_10a4
	DMA Sixth Memory Address Register (D6_MADR)	0x1f80_10e0
	DMA Sixth Block Control Register (D6_BCR)		0x1f80_10e4
	BC	Number of list entries.
	DMA Primary Control Register (DPCR)		0x1f80_10f0
	Number
	Control Register format
	
	
	R33
	L33
	LB3
	H
	DQA
	DQB
	ZF3
	DZF4

	Data Registers
	Name
	Note 4

